Compare commits

..

6 Commits

Author SHA1 Message Date
e29aac17ca Improve docs and logging 2023-02-15 17:45:02 -07:00
ba96c67893 Housekeeping 2022-12-18 17:53:00 -07:00
451cefdae0 Integrate digital pressure sensor 2022-12-15 14:56:07 -07:00
aba9954053 Switch float to double 2022-10-06 18:26:17 -06:00
cc123773b5 Integrate relays, improve logging 2022-09-18 16:09:21 -06:00
1833ecf607 Add relay driver example sketch 2022-09-18 15:30:42 -06:00
10 changed files with 621 additions and 86 deletions

152
firmware/main/XGZP.cpp Normal file
View File

@@ -0,0 +1,152 @@
/*
Copyright 2019 stickbreaker@github
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "XGZP.h"
#include <Wire.h>
#define I2C_ERROR_OK 0
XGZP::XGZP(void):
_devID(0)
{}
bool XGZP::begin(uint8_t devID) {
_devID=0;
Wire.begin();
Wire.beginTransmission(devID);
Wire.write(0xA5); // Sys Config Register
Wire.endTransmission();
uint8_t count = Wire.requestFrom(devID, (uint8_t) 1);
if (count == 1) {
uint8_t reg = Wire.read();
Serial.printf(" Read System Configuration register = 0x%02X\n", reg);
Wire.beginTransmission(devID);
Wire.write(0xA5); // sys configuration register
// DAC ON, Single Conversion, Vout=Fixed by Vext*1.5, Vext=3.6V, Calibrated Output, Diag=on
Wire.write(0xFD); //
uint8_t err = Wire.endTransmission();
if(err != 0){
Serial.printf("Writing to register 0xA5 value 0xFD failed = %d\n", err);
return false; // fail
}
bool ready = false;
uint32_t tick = millis(); // timout
while (!ready && (millis() - tick < 1000)) {
Wire.beginTransmission(devID);
ready = I2C_ERROR_OK == Wire.endTransmission();
}
if (ready) {
Wire.beginTransmission(devID);
Wire.write(0xA5);
Wire.write(0x0A);
err = Wire.endTransmission();
if(err != 0){
Serial.printf("Writing to register 0xA5 value 0x0A failed = %d\n", err);
return false; // fail
}
}
else {
Serial.println("Timeout, Sensor did not respond after first config set.");
return false;
}
}
else {
Serial.println("Reading from 0xA5 failed");
return false;
}
_devID = devID;
return true;
}
bool XGZP::read(float * reading) {
if ((! _devID ) || ( *reading == NULL )) {
Serial.println("Not initialized or no return value location, returning");
if (*reading != NULL) *reading = NAN;
return false;
}
float XGZPC_Value = 0;
bool ready = false;
uint32_t tick = millis();
while (!ready && (millis() - tick < 1000)) { // Wait upto 1sec for conversion to complete
Wire.beginTransmission(_devID);
Wire.write(0x02); // status register
uint8_t err = Wire.endTransmission();
if (err == I2C_ERROR_OK) {
uint8_t count = Wire.requestFrom(_devID, (uint8_t) 1); // get status byte
if (count==1) { // got data
uint8_t status = Wire.read();
ready = (status & 0x01) == 0x01; // data ready!
}
}
}
if (ready) {
Wire.beginTransmission(_devID);
Wire.write(0x06); // data register
uint8_t err = Wire.endTransmission();
if (err == I2C_ERROR_OK) {
uint8_t count = Wire.requestFrom(_devID, (uint8_t) 3); // get data
if (count == 3) { // got data
XGZPC_Value = Wire.read() * 65536.0 + Wire.read() * 256.0 + Wire.read();
XGZPC_Value = XGZPC_Value / 8.0;
//Serial.print("Pa Value: ");
//Serial.println(XGZPC_Value);
XGZPC_Value = XGZPC_Value / 6895.0;
*reading = XGZPC_Value;
Wire.beginTransmission(_devID); // start next sample?
Wire.write(0x30);
Wire.write(0x0a); // Data and Temp conversion, Single shot, immediate
uint8_t err = Wire.endTransmission();
if (err != 0) {
Serial.printf(" next Sample start failed? i2cError = %d\n", err);
return true; // data valid, next sample will be a problem.
}
else {
return true;
}
}
else{
Serial.println("Read data failed");
return false;
}
}
else {
Serial.println("setData address failed");
return false;
}
}
else{
Wire.beginTransmission(_devID); // start next sample?
Wire.write(0x30);
Wire.write(0x0a); // Data and Temp conversion, Single shot, immediate
uint8_t err = Wire.endTransmission();
if (err != 0) {
Serial.printf(" Next Sample start failed? i2cError = %d\n", err);
}
return false;
}
}

39
firmware/main/XGZP.h Normal file
View File

@@ -0,0 +1,39 @@
/*
Copyright 2019 stickbreaker@github
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
*/
#ifndef XGZP_h
#define XGZP_h
#include <Arduino.h>
class XGZP {
public:
XGZP();
bool begin( uint8_t devID = 0x6D );
bool read( float * reading);
private:
uint8_t _devID;
};
#endif

View File

@@ -2,23 +2,36 @@
#include <Arduino.h> #include <Arduino.h>
#include "hardware.h" #include "hardware.h"
#include "XGZP.h"
bool simulating = false; bool simulating = true;
float simulatedPressure = 0.0; double simulatedPressure = 0.0;
float inflatePSIPerSecond = 0.0; double inflatePSIPerSecond = 0.0;
float deflatePSIPerSecond = 0.0; double deflatePSIPerSecond = 0.0;
float pressureChangeRate = 0.0; double pressureChangeRate = 0.0;
float deflateOffsetMultiplier = 0.0; double deflateOffsetMultiplier = 0.0;
float inflateOffsetMultiplier = 0.0; double inflateOffsetMultiplier = 0.0;
float offsetMultiplier = 0.0; double offsetMultiplier = 0.0;
float value = 1;
XGZP sensor;
void initHardware() {
Serial.println("Initializing hardware...");
if(!sensor.begin()){
Serial.printf("Error initializing Sensor\n Locking up.");
while(1);
}
}
void initSimulation() { void initSimulation() {
simulating = true; simulating = true;
simulatedPressure = (float) random(10, 30); simulatedPressure = (double) random(10, 30);
inflatePSIPerSecond = 0.0303; inflatePSIPerSecond = 0.0303;
deflatePSIPerSecond = 0.0958; deflatePSIPerSecond = 0.0958;
deflateOffsetMultiplier = random(3, 10) / 100.0; deflateOffsetMultiplier = random(3, 10) / 100.0;
inflateOffsetMultiplier = 1.0 - deflateOffsetMultiplier; inflateOffsetMultiplier = random(103, 160) / 100.0;
offsetMultiplier = 1.0; offsetMultiplier = 1.0;
} }
@@ -26,36 +39,33 @@ void tickSimulation() {
static unsigned long lastTick = millis(); static unsigned long lastTick = millis();
if (millis() > lastTick + 100) { if (millis() > lastTick + 100) {
float pressureDelta = (millis() - lastTick) / 1000.0 * pressureChangeRate; double pressureDelta = (millis() - lastTick) / 1000.0 * pressureChangeRate;
simulatedPressure += pressureDelta; simulatedPressure += pressureDelta;
lastTick = millis(); lastTick = millis();
Serial.print("Simulated pressure: ");
Serial.println(simulatedPressure);
} }
} }
void measurePressure(float &pressureValue, int pin) { void measurePressure(double &pressureValue) {
if (simulating) { if (simulating) {
float adjusted = simulatedPressure + (random(-100, 100) / 100.0); double adjusted = simulatedPressure + (random(-100, 100) / 100.0);
adjusted *= offsetMultiplier; adjusted *= offsetMultiplier;
pressureValue = 0.99 * pressureValue + 0.01 * adjusted; pressureValue = 0.99 * pressureValue + 0.01 * adjusted;
} else { } else {
int sensorValue = analogRead(pin); sensor.read(&value);
float adjusted = 0.098 * sensorValue - 16.56 + 3.58; double adjusted = 1.368 * value - 6.4;
pressureValue = 0.99 * pressureValue + 0.01 * adjusted; pressureValue = 0.99 * pressureValue + 0.01 * adjusted;
} }
} }
void resamplePressure(float &pressureValue, int pin) { void resamplePressure(double &pressureValue) {
if (simulating) { if (simulating) {
float adjusted = simulatedPressure + (random(-100, 100) / 100.0); double adjusted = simulatedPressure + (random(-100, 100) / 100.0);
adjusted *= offsetMultiplier; adjusted *= offsetMultiplier;
pressureValue = adjusted; pressureValue = adjusted;
} else { } else {
int sensorValue = analogRead(pin); sensor.read(&value);
float adjusted = 0.098 * sensorValue - 16.56 + 3.58; double adjusted = 1.368 * value - 6.4;
pressureValue = adjusted; pressureValue = adjusted;
} }
} }
@@ -64,11 +74,20 @@ void setSoleniod(int solenoidState) {
if (solenoidState == SOLENOID_STOP) { if (solenoidState == SOLENOID_STOP) {
pressureChangeRate = 0.0; pressureChangeRate = 0.0;
offsetMultiplier = 1.0; offsetMultiplier = 1.0;
digitalWrite(RELAY1_PIN, HIGH);
digitalWrite(RELAY2_PIN, HIGH);
} else if (solenoidState == SOLENOID_INFLATE) { } else if (solenoidState == SOLENOID_INFLATE) {
pressureChangeRate = inflatePSIPerSecond; pressureChangeRate = inflatePSIPerSecond;
offsetMultiplier = inflateOffsetMultiplier; offsetMultiplier = inflateOffsetMultiplier;
digitalWrite(RELAY1_PIN, LOW);
digitalWrite(RELAY2_PIN, HIGH);
} else if (solenoidState == SOLENOID_DEFLATE) { } else if (solenoidState == SOLENOID_DEFLATE) {
pressureChangeRate = -deflatePSIPerSecond; pressureChangeRate = -deflatePSIPerSecond;
offsetMultiplier = deflatePSIPerSecond; offsetMultiplier = deflatePSIPerSecond;
digitalWrite(RELAY1_PIN, HIGH);
digitalWrite(RELAY2_PIN, LOW);
} }
} }

View File

@@ -7,10 +7,18 @@
#define SOLENOID_INFLATE 1 #define SOLENOID_INFLATE 1
#define SOLENOID_DEFLATE 2 #define SOLENOID_DEFLATE 2
#define RELAY1_PIN 11
#define RELAY2_PIN 7
#define PRESSURE_SENSOR_PIN A0
extern double simulatedPressure;
void initSimulation(); void initSimulation();
void initHardware();
void tickSimulation(); void tickSimulation();
void measurePressure(float &pressureValue, int pin); void measurePressure(double &pressureValue);
void resamplePressure(float &pressureValue, int pin); void resamplePressure(double &pressureValue);
void setSoleniod(int solenoidState); void setSoleniod(int solenoidState);
#endif #endif

View File

@@ -1,7 +1,16 @@
// Tire Inflation Firmware
//
// Board: Adafruit Feather nRF52832
// Setup: https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/arduino-bsp-setup
#include <Wire.h> #include <Wire.h>
#include <Adafruit_GFX.h> #include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h> #include <Adafruit_SSD1306.h>
#include <Adafruit_FeatherOLED.h> #include <Adafruit_FeatherOLED.h> // make sure to add:
// #define VBATPIN 0
// #define VBAT_MULTIPLIER 0
// to Adafruit_FeatherOLED.cpp
// or Adafruit_FeatherOLED_SH110X.cpp
#include "hardware.h" #include "hardware.h"
@@ -16,16 +25,14 @@
#define ENTER_BUTTON 30 #define ENTER_BUTTON 30
#define DOWN_BUTTON 27 #define DOWN_BUTTON 27
#define PRESSURE_SENSOR_PIN A0
Adafruit_FeatherOLED oled = Adafruit_FeatherOLED(); Adafruit_FeatherOLED oled = Adafruit_FeatherOLED();
static const unsigned char PROGMEM arrow[] = //static const unsigned char PROGMEM arrow[] =
{ B10000000, //{ B10000000,
B11000000, // B11000000,
B11100000, // B11100000,
B11000000, // B11000000,
B10000000}; // B10000000};
//oled.drawBitmap(0, 1, arrow, 8, 5, 1); //oled.drawBitmap(0, 1, arrow, 8, 5, 1);
@@ -38,7 +45,7 @@ enum buttonStates {
NUM_BUTTONSTATES NUM_BUTTONSTATES
}; };
enum screenStates { enum machineStates {
BOOT_UP, BOOT_UP,
PRESSURE, PRESSURE,
SET_POINT, SET_POINT,
@@ -51,16 +58,37 @@ enum screenStates {
SAY_HOLD, SAY_HOLD,
SAY_TIMEOUT, SAY_TIMEOUT,
SETTINGS, SETTINGS,
NUM_SCREENSTATES
}; };
static const char* stateLabels[] = {
"BOOT_UP",
"PRESSURE",
"SET_POINT",
"INIT_RUN",
"BEGIN_RUN",
"MEASURING",
"RUNNING",
"SAY_DONE",
"SAY_CANCEL",
"SAY_HOLD",
"SAY_TIMEOUT",
"SETTINGS",
};
enum buttonStates upButton = OPEN; enum buttonStates upButton = OPEN;
enum buttonStates enterButton = OPEN; enum buttonStates enterButton = OPEN;
enum buttonStates downButton = OPEN; enum buttonStates downButton = OPEN;
float pressureValue = 0.0; enum machineStates machineState = BOOT_UP;
double pressureValue = 0.0;
int pressureSetPoint = 0;
double initialPressure = 0.0;
//double runningPressure = 0.0;
double sampledPressure = 0.0;
double runningRateInv = 0.0;
int debounceValue(float value) { int debounceValue(double value) {
static int prevValue = (int) value; static int prevValue = (int) value;
if (abs(prevValue - value) > 0.4) { if (abs(prevValue - value) > 0.4) {
@@ -82,34 +110,64 @@ void setup()
pinMode(ENTER_BUTTON, INPUT); // Has external pullup pinMode(ENTER_BUTTON, INPUT); // Has external pullup
pinMode(DOWN_BUTTON, INPUT_PULLUP); pinMode(DOWN_BUTTON, INPUT_PULLUP);
pinMode(RELAY1_PIN, OUTPUT);
pinMode(RELAY2_PIN, OUTPUT);
digitalWrite(RELAY1_PIN, HIGH);
digitalWrite(RELAY2_PIN, HIGH);
#ifdef SIMULATE #ifdef SIMULATE
initSimulation(); initSimulation();
#else
initHardware();
#endif #endif
resamplePressure(pressureValue, PRESSURE_SENSOR_PIN); resamplePressure(pressureValue);
} }
void loop() { void loop() {
measurePressure(pressureValue, PRESSURE_SENSOR_PIN); measurePressure(pressureValue);
pollButtons(); pollButtons();
runUI(); runStateMachine();
logData();
#ifdef SIMULATE #ifdef SIMULATE
tickSimulation(); tickSimulation();
#endif #endif
} }
void runUI() { void logData() {
static enum screenStates screenState = BOOT_UP; static unsigned long lastLogTime = millis();
static enum screenStates nextState = BOOT_UP;
if (millis() > lastLogTime + 100) {
//Serial.print("millis: ");
//Serial.print(millis());
Serial.print(", pressure: ");
Serial.print(pressureValue);
#ifdef SIMULATE
Serial.print(", simulated: ");
Serial.print(simulatedPressure);
#endif
Serial.print(", sampled: ");
Serial.print(sampledPressure);
//Serial.print(", rate (inv): ");
//Serial.print(runningRateInv);
Serial.print(", setpoint: ");
Serial.print(pressureSetPoint);
Serial.print(", state: ");
Serial.print(stateLabels[machineState]);
Serial.println("");
lastLogTime = millis();
}
}
void runStateMachine() {
static enum machineStates nextState = BOOT_UP;
static unsigned long timer = millis(); static unsigned long timer = millis();
static int pressureSetPoint = 0;
static unsigned long startTime = millis(); static unsigned long startTime = millis();
//static float initialPressure = 0.0; static unsigned long stopTime = millis();
//static float runningPressure = 0.0;
static float sampledPressure = 0.0;
static bool isInflating = false; static bool isInflating = false;
static bool isDeflating = false; static bool isDeflating = false;
@@ -118,18 +176,10 @@ void runUI() {
oled.clearDisplay(); oled.clearDisplay();
Serial.print("pressure: "); switch (machineState) {
Serial.print(pressureValue);
Serial.print(", sampled: ");
Serial.print(sampledPressure);
Serial.print(", setpoint: ");
Serial.print(pressureSetPoint);
Serial.println("");
switch (screenState) {
case BOOT_UP: case BOOT_UP:
if (millis() >= timer + 2000) { if (millis() >= timer + 2000) {
screenState = PRESSURE; machineState = PRESSURE;
} }
oled.setCursor(0,0); oled.setCursor(0,0);
@@ -145,25 +195,25 @@ void runUI() {
case PRESSURE: case PRESSURE:
if (enterButton == PRESSED) { if (enterButton == PRESSED) {
screenState = SAY_HOLD; machineState = SAY_HOLD;
nextState = PRESSURE; nextState = PRESSURE;
timer = millis(); timer = millis();
} else if (enterButton == HELD) { } else if (enterButton == HELD) {
; // settings? ; // settings?
} else if (upButton == PRESSED) { } else if (upButton == PRESSED) {
screenState = SET_POINT; machineState = SET_POINT;
pressureSetPoint = debouncedPressureValue+1; pressureSetPoint = debouncedPressureValue+1;
timer = millis(); timer = millis();
} else if (downButton == PRESSED) { } else if (downButton == PRESSED) {
screenState = SET_POINT; machineState = SET_POINT;
pressureSetPoint = debouncedPressureValue-1; pressureSetPoint = debouncedPressureValue-1;
timer = millis(); timer = millis();
} else if (upButton == HELD) { } else if (upButton == HELD) {
screenState = SET_POINT; machineState = SET_POINT;
pressureSetPoint = debouncedPressureValue+1; pressureSetPoint = debouncedPressureValue+1;
timer = millis(); timer = millis();
} else if (downButton == HELD) { } else if (downButton == HELD) {
screenState = SET_POINT; machineState = SET_POINT;
pressureSetPoint = debouncedPressureValue-1; pressureSetPoint = debouncedPressureValue-1;
timer = millis(); timer = millis();
} }
@@ -178,12 +228,12 @@ void runUI() {
case SET_POINT: case SET_POINT:
if (enterButton == PRESSED) { if (enterButton == PRESSED) {
screenState = SAY_HOLD; machineState = SAY_HOLD;
nextState = SET_POINT; nextState = SET_POINT;
timer = millis(); timer = millis();
} else if (enterButton == HELD) { } else if (enterButton == HELD) {
timer = millis(); timer = millis();
screenState = INIT_RUN; machineState = INIT_RUN;
} else if (upButton == PRESSED) { } else if (upButton == PRESSED) {
timer = millis(); timer = millis();
pressureSetPoint++; pressureSetPoint++;
@@ -199,7 +249,7 @@ void runUI() {
pressureSetPoint--; pressureSetPoint--;
delay(75); delay(75);
} else if (millis() >= timer + TIMEOUT_TIME) { } else if (millis() >= timer + TIMEOUT_TIME) {
screenState = SAY_TIMEOUT; machineState = SAY_TIMEOUT;
nextState = PRESSURE; nextState = PRESSURE;
timer = millis(); timer = millis();
} }
@@ -216,10 +266,10 @@ void runUI() {
break; break;
case INIT_RUN: case INIT_RUN:
//initialPressure = pressureValue; initialPressure = pressureValue;
startTime = millis(); startTime = millis();
timer = millis(); timer = millis();
screenState = BEGIN_RUN; machineState = BEGIN_RUN;
oled.setCursor(0,0); oled.setCursor(0,0);
oled.setTextSize(1); oled.setTextSize(1);
@@ -237,7 +287,7 @@ void runUI() {
isInflating = false; isInflating = false;
} else { } else {
setSoleniod(SOLENOID_STOP); setSoleniod(SOLENOID_STOP);
screenState = SAY_DONE; machineState = SAY_DONE;
nextState = PRESSURE; nextState = PRESSURE;
} }
@@ -249,32 +299,51 @@ void runUI() {
if (millis() >= timer + 5000) { if (millis() >= timer + 5000) {
//runningPressure = pressureValue; //runningPressure = pressureValue;
setSoleniod(SOLENOID_STOP); setSoleniod(SOLENOID_STOP);
screenState = MEASURING; machineState = MEASURING;
timer = millis(); timer = millis();
stopTime = millis();
} }
break; break;
case MEASURING: case MEASURING:
if (millis() < timer + 500) {
// wait for solenoids to settle before averaging
resamplePressure(pressureValue);
}
if (millis() >= timer + 3000) { if (millis() >= timer + 3000) {
sampledPressure = pressureValue; sampledPressure = pressureValue;
runningRateInv = (stopTime - startTime) / (sampledPressure - initialPressure);
//Serial.print("stopTime: ");
//Serial.print(stopTime);
//Serial.print(", startTime: ");
//Serial.print(startTime);
//Serial.print(", sampledPressure: ");
//Serial.print(sampledPressure);
//Serial.print(", initialPressure: ");
//Serial.print(initialPressure);
//Serial.print(", rate: ");
//Serial.print(runningRateInv);
//Serial.println("");
initialPressure = sampledPressure;
if (isInflating && (int) sampledPressure >= pressureSetPoint) { if (isInflating && (int) sampledPressure >= pressureSetPoint) {
screenState = SAY_DONE; machineState = SAY_DONE;
nextState = PRESSURE; nextState = PRESSURE;
} else if (isDeflating && (int) sampledPressure <= pressureSetPoint) { } else if (isDeflating && (int) sampledPressure <= pressureSetPoint) {
screenState = SAY_DONE; machineState = SAY_DONE;
nextState = PRESSURE; nextState = PRESSURE;
} else { } else {
screenState = RUNNING; machineState = RUNNING;
} }
timer = millis(); timer = millis();
} startTime = millis();
if (millis() < timer + 500) {
// wait for solenoids to settle before averaging
resamplePressure(pressureValue, PRESSURE_SENSOR_PIN);
} }
setSoleniod(SOLENOID_STOP); setSoleniod(SOLENOID_STOP);
@@ -290,25 +359,30 @@ void runUI() {
case RUNNING: case RUNNING:
if (enterButton == PRESSED) { if (enterButton == PRESSED) {
screenState = SAY_CANCEL; setSoleniod(SOLENOID_STOP);
machineState = SAY_CANCEL;
nextState = PRESSURE; nextState = PRESSURE;
timer = millis(); timer = millis();
} else if (upButton == PRESSED) { } else if (upButton == PRESSED) {
screenState = SAY_CANCEL; setSoleniod(SOLENOID_STOP);
machineState = SAY_CANCEL;
nextState = PRESSURE; nextState = PRESSURE;
timer = millis(); timer = millis();
} else if (downButton == PRESSED) { } else if (downButton == PRESSED) {
screenState = SAY_CANCEL; setSoleniod(SOLENOID_STOP);
machineState = SAY_CANCEL;
nextState = PRESSURE; nextState = PRESSURE;
timer = millis(); timer = millis();
} }
if (isInflating && millis() >= timer + 20000) { if (isInflating && millis() >= timer + 20000) {
screenState = MEASURING; machineState = MEASURING;
timer = millis(); timer = millis();
stopTime = millis();
} else if (isDeflating && millis() >= timer + 10000) { } else if (isDeflating && millis() >= timer + 10000) {
screenState = MEASURING; machineState = MEASURING;
timer = millis(); timer = millis();
stopTime = millis();
} }
if (isInflating) { if (isInflating) {
@@ -341,7 +415,7 @@ void runUI() {
case SAY_DONE: case SAY_DONE:
if (millis() >= timer + 3000) { if (millis() >= timer + 3000) {
screenState = nextState; machineState = nextState;
timer = millis(); timer = millis();
} }
@@ -355,7 +429,7 @@ void runUI() {
case SAY_CANCEL: case SAY_CANCEL:
if (millis() >= timer + 1000) { if (millis() >= timer + 1000) {
screenState = nextState; machineState = nextState;
timer = millis(); timer = millis();
} }
@@ -369,7 +443,7 @@ void runUI() {
case SAY_HOLD: case SAY_HOLD:
if (millis() >= timer + 500) { if (millis() >= timer + 500) {
screenState = nextState; machineState = nextState;
timer = millis(); timer = millis();
} }
@@ -383,7 +457,7 @@ void runUI() {
case SAY_TIMEOUT: case SAY_TIMEOUT:
if (millis() >= timer + 1000) { if (millis() >= timer + 1000) {
screenState = nextState; machineState = nextState;
timer = millis(); timer = millis();
} }

View File

@@ -0,0 +1,152 @@
/*
Copyright 2019 stickbreaker@github
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "XGZP.h"
#include <Wire.h>
#define I2C_ERROR_OK 0
XGZP::XGZP(void):
_devID(0)
{}
bool XGZP::begin(uint8_t devID) {
_devID=0;
Wire.begin();
Wire.beginTransmission(devID);
Wire.write(0xA5); // Sys Config Register
Wire.endTransmission();
uint8_t count = Wire.requestFrom(devID, (uint8_t) 1);
if (count == 1) {
uint8_t reg = Wire.read();
Serial.printf(" Read System Configuration register = 0x%02X\n", reg);
Wire.beginTransmission(devID);
Wire.write(0xA5); // sys configuration register
// DAC ON, Single Conversion, Vout=Fixed by Vext*1.5, Vext=3.6V, Calibrated Output, Diag=on
Wire.write(0xFD); //
uint8_t err = Wire.endTransmission();
if(err != 0){
Serial.printf("Writing to register 0xA5 value 0xFD failed = %d\n", err);
return false; // fail
}
bool ready = false;
uint32_t tick = millis(); // timout
while (!ready && (millis() - tick < 1000)) {
Wire.beginTransmission(devID);
ready = I2C_ERROR_OK == Wire.endTransmission();
}
if (ready) {
Wire.beginTransmission(devID);
Wire.write(0xA5);
Wire.write(0x0A);
err = Wire.endTransmission();
if(err != 0){
Serial.printf("Writing to register 0xA5 value 0x0A failed = %d\n", err);
return false; // fail
}
}
else {
Serial.println("Timeout, Sensor did not respond after first config set.");
return false;
}
}
else {
Serial.println("Reading from 0xA5 failed");
return false;
}
_devID = devID;
return true;
}
bool XGZP::read(float * reading) {
if ((! _devID ) || ( *reading == NULL )) {
Serial.println("Not initialized or no return value location, returning");
if (*reading != NULL) *reading = NAN;
return false;
}
float XGZPC_Value = 0;
bool ready = false;
uint32_t tick = millis();
while (!ready && (millis() - tick < 1000)) { // Wait upto 1sec for conversion to complete
Wire.beginTransmission(_devID);
Wire.write(0x02); // status register
uint8_t err = Wire.endTransmission();
if (err == I2C_ERROR_OK) {
uint8_t count = Wire.requestFrom(_devID, (uint8_t) 1); // get status byte
if (count==1) { // got data
uint8_t status = Wire.read();
ready = (status & 0x01) == 0x01; // data ready!
}
}
}
if (ready) {
Wire.beginTransmission(_devID);
Wire.write(0x06); // data register
uint8_t err = Wire.endTransmission();
if (err == I2C_ERROR_OK) {
uint8_t count = Wire.requestFrom(_devID, (uint8_t) 3); // get data
if (count == 3) { // got data
XGZPC_Value = Wire.read() * 65536.0 + Wire.read() * 256.0 + Wire.read();
XGZPC_Value = XGZPC_Value / 8.0;
Serial.print("Pa Value: ");
Serial.println(XGZPC_Value);
XGZPC_Value = XGZPC_Value / 6895.0;
*reading = XGZPC_Value;
Wire.beginTransmission(_devID); // start next sample?
Wire.write(0x30);
Wire.write(0x0a); // Data and Temp conversion, Single shot, immediate
uint8_t err = Wire.endTransmission();
if (err != 0) {
Serial.printf(" next Sample start failed? i2cError = %d\n", err);
return true; // data valid, next sample will be a problem.
}
else {
return true;
}
}
else{
Serial.println("Read data failed");
return false;
}
}
else {
Serial.println("setData address failed");
return false;
}
}
else{
Wire.beginTransmission(_devID); // start next sample?
Wire.write(0x30);
Wire.write(0x0a); // Data and Temp conversion, Single shot, immediate
uint8_t err = Wire.endTransmission();
if (err != 0) {
Serial.printf(" Next Sample start failed? i2cError = %d\n", err);
}
return false;
}
}

View File

@@ -0,0 +1,39 @@
/*
Copyright 2019 stickbreaker@github
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
*/
#ifndef XGZP_h
#define XGZP_h
#include <Arduino.h>
class XGZP {
public:
XGZP();
bool begin( uint8_t devID = 0x6D );
bool read( float * reading);
private:
uint8_t _devID;
};
#endif

View File

@@ -0,0 +1,28 @@
#include <Arduino.h>
#include <Wire.h>
#include "XGZP.h"
XGZP sensor;
float value = 1;
void setup() {
Serial.begin(9600);
if(!sensor.begin()){
Serial.printf("Error initializing Sensor\n Locking up.");
while(1);
}
}
void loop() {
sensor.read(&value);
float corrected = 1.368 * value - 6.4;
Serial.print(corrected);
Serial.println(" PSI");
delay(250);
}

View File

@@ -0,0 +1,24 @@
#define RELAY1_PIN 11
#define RELAY2_PIN 7
void setup() {
// initialize serial communications at 9600 bps:
Serial.begin(9600);
pinMode(RELAY1_PIN, OUTPUT);
pinMode(RELAY2_PIN, OUTPUT);
digitalWrite(RELAY1_PIN, LOW);
digitalWrite(RELAY2_PIN, LOW);
}
void loop() {
digitalWrite(RELAY1_PIN, HIGH);
delay(500);
digitalWrite(RELAY2_PIN, HIGH);
delay(500);
digitalWrite(RELAY1_PIN, LOW);
delay(500);
digitalWrite(RELAY2_PIN, LOW);
delay(500);
}