optionally tile images in token space
This commit is contained in:
@@ -1,19 +1,20 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch import FloatTensor, LongTensor
|
||||
from torch.nn import Module, ModuleList, GroupNorm, Conv2d, Embedding
|
||||
from math import sqrt
|
||||
|
||||
|
||||
class ResnetBlock(Module):
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, log2_count_in: int, log2_count_out: int):
|
||||
super().__init__()
|
||||
m, n = 2 ** log2_count_in, 2 ** log2_count_out
|
||||
self.is_middle = m == n
|
||||
self.norm1 = GroupNorm(2 ** 5, m)
|
||||
self.conv1 = Conv2d(m, n, 3, padding=1)
|
||||
self.norm2 = GroupNorm(2 ** 5, n)
|
||||
self.conv2 = Conv2d(n, n, 3, padding=1)
|
||||
self.norm1 = nn.GroupNorm(2 ** 5, m)
|
||||
self.conv1 = nn.Conv2d(m, n, 3, padding=1)
|
||||
self.norm2 = nn.GroupNorm(2 ** 5, n)
|
||||
self.conv2 = nn.Conv2d(n, n, 3, padding=1)
|
||||
if not self.is_middle:
|
||||
self.nin_shortcut = Conv2d(m, n, 1)
|
||||
self.nin_shortcut = nn.Conv2d(m, n, 1)
|
||||
|
||||
def forward(self, x: FloatTensor) -> FloatTensor:
|
||||
h = x
|
||||
@@ -28,38 +29,39 @@ class ResnetBlock(Module):
|
||||
return x + h
|
||||
|
||||
|
||||
class AttentionBlock(Module):
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
n = 2 ** 9
|
||||
self.norm = GroupNorm(2 ** 5, n)
|
||||
self.q = Conv2d(n, n, 1)
|
||||
self.k = Conv2d(n, n, 1)
|
||||
self.v = Conv2d(n, n, 1)
|
||||
self.proj_out = Conv2d(n, n, 1)
|
||||
self.norm = nn.GroupNorm(2 ** 5, n)
|
||||
self.q = nn.Conv2d(n, n, 1)
|
||||
self.k = nn.Conv2d(n, n, 1)
|
||||
self.v = nn.Conv2d(n, n, 1)
|
||||
self.proj_out = nn.Conv2d(n, n, 1)
|
||||
|
||||
def forward(self, x: FloatTensor) -> FloatTensor:
|
||||
n, m = 2 ** 9, x.shape[0]
|
||||
h = x
|
||||
h = self.norm(h)
|
||||
q = self.q.forward(h)
|
||||
k = self.k.forward(h)
|
||||
v = self.v.forward(h)
|
||||
q = q.reshape(m, n, 2 ** 8)
|
||||
q = self.q.forward(h)
|
||||
k = k.reshape(m, n, -1)
|
||||
v = v.reshape(m, n, -1)
|
||||
q = q.reshape(m, n, -1)
|
||||
q = q.permute(0, 2, 1)
|
||||
k = k.reshape(m, n, 2 ** 8)
|
||||
w = torch.bmm(q, k)
|
||||
w /= n ** 0.5
|
||||
w = torch.softmax(w, dim=2)
|
||||
v = v.reshape(m, n, 2 ** 8)
|
||||
w = w.permute(0, 2, 1)
|
||||
h = torch.bmm(v, w)
|
||||
h = h.reshape(m, n, 2 ** 4, 2 ** 4)
|
||||
token_count = int(sqrt(h.shape[-1]))
|
||||
h = h.reshape(m, n, token_count, token_count)
|
||||
h = self.proj_out.forward(h)
|
||||
return x + h
|
||||
|
||||
|
||||
class MiddleLayer(Module):
|
||||
class MiddleLayer(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.block_1 = ResnetBlock(9, 9)
|
||||
@@ -73,12 +75,12 @@ class MiddleLayer(Module):
|
||||
return h
|
||||
|
||||
|
||||
class Upsample(Module):
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, log2_count):
|
||||
super().__init__()
|
||||
n = 2 ** log2_count
|
||||
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
|
||||
self.conv = Conv2d(n, n, 3, padding=1)
|
||||
self.conv = nn.Conv2d(n, n, 3, padding=1)
|
||||
|
||||
def forward(self, x: FloatTensor) -> FloatTensor:
|
||||
x = self.upsample.forward(x.to(torch.float32))
|
||||
@@ -86,7 +88,7 @@ class Upsample(Module):
|
||||
return x
|
||||
|
||||
|
||||
class UpsampleBlock(Module):
|
||||
class UpsampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
log2_count_in: int,
|
||||
@@ -97,19 +99,19 @@ class UpsampleBlock(Module):
|
||||
super().__init__()
|
||||
self.has_attention = has_attention
|
||||
self.has_upsample = has_upsample
|
||||
self.block = ModuleList([
|
||||
|
||||
self.block = nn.ModuleList([
|
||||
ResnetBlock(log2_count_in, log2_count_out),
|
||||
ResnetBlock(log2_count_out, log2_count_out),
|
||||
ResnetBlock(log2_count_out, log2_count_out)
|
||||
])
|
||||
|
||||
if has_attention:
|
||||
self.attn = ModuleList([
|
||||
self.attn = nn.ModuleList([
|
||||
AttentionBlock(),
|
||||
AttentionBlock(),
|
||||
AttentionBlock()
|
||||
])
|
||||
else:
|
||||
self.attn = ModuleList()
|
||||
|
||||
if has_upsample:
|
||||
self.upsample = Upsample(log2_count_out)
|
||||
@@ -125,14 +127,14 @@ class UpsampleBlock(Module):
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(Module):
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.conv_in = Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
|
||||
self.conv_in = nn.Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
|
||||
self.mid = MiddleLayer()
|
||||
|
||||
self.up = ModuleList([
|
||||
self.up = nn.ModuleList([
|
||||
UpsampleBlock(7, 7, False, False),
|
||||
UpsampleBlock(8, 7, False, True),
|
||||
UpsampleBlock(8, 8, False, True),
|
||||
@@ -140,8 +142,8 @@ class Decoder(Module):
|
||||
UpsampleBlock(9, 9, True, True)
|
||||
])
|
||||
|
||||
self.norm_out = GroupNorm(2 ** 5, 2 ** 7)
|
||||
self.conv_out = Conv2d(2 ** 7, 3, 3, padding=1)
|
||||
self.norm_out = nn.GroupNorm(2 ** 5, 2 ** 7)
|
||||
self.conv_out = nn.Conv2d(2 ** 7, 3, 3, padding=1)
|
||||
|
||||
def forward(self, z: FloatTensor) -> FloatTensor:
|
||||
z = self.conv_in.forward(z)
|
||||
@@ -156,22 +158,40 @@ class Decoder(Module):
|
||||
return z
|
||||
|
||||
|
||||
class VQGanDetokenizer(Module):
|
||||
class VQGanDetokenizer(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
vocab_count, embed_count = 2 ** 14, 2 ** 8
|
||||
self.vocab_count = vocab_count
|
||||
self.embedding = Embedding(vocab_count, embed_count)
|
||||
self.post_quant_conv = Conv2d(embed_count, embed_count, 1)
|
||||
self.embedding = nn.Embedding(vocab_count, embed_count)
|
||||
self.post_quant_conv = nn.Conv2d(embed_count, embed_count, 1)
|
||||
self.decoder = Decoder()
|
||||
|
||||
def forward(self, z: LongTensor) -> FloatTensor:
|
||||
def forward(self, is_seamless: bool, z: LongTensor) -> FloatTensor:
|
||||
z.clamp_(0, self.vocab_count - 1)
|
||||
z = self.embedding.forward(z)
|
||||
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
|
||||
grid_size = int(sqrt(z.shape[0]))
|
||||
token_count = grid_size * 2 ** 4
|
||||
|
||||
if is_seamless:
|
||||
z = z.view([grid_size, grid_size, 2 ** 4, 2 ** 4])
|
||||
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
||||
z = z.flatten().unsqueeze(1)
|
||||
z = self.embedding.forward(z)
|
||||
z = z.view((1, token_count, token_count, 2 ** 8))
|
||||
else:
|
||||
z = self.embedding.forward(z)
|
||||
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
|
||||
|
||||
z = z.permute(0, 3, 1, 2).contiguous()
|
||||
z = self.post_quant_conv.forward(z)
|
||||
z = self.decoder.forward(z)
|
||||
z = z.permute(0, 2, 3, 1)
|
||||
z = z.clip(0.0, 1.0) * 255
|
||||
|
||||
if is_seamless:
|
||||
z = z[0]
|
||||
else:
|
||||
z = z.view([grid_size, grid_size, 2 ** 8, 2 ** 8, 3])
|
||||
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
||||
|
||||
return z
|
||||
|
Reference in New Issue
Block a user