You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

197 lines
5.9 KiB

import torch
from torch import nn
from torch import FloatTensor, LongTensor
from math import sqrt
class ResnetBlock(nn.Module):
def __init__(self, log2_count_in: int, log2_count_out: int):
super().__init__()
m, n = 2 ** log2_count_in, 2 ** log2_count_out
self.is_middle = m == n
self.norm1 = nn.GroupNorm(2 ** 5, m)
self.conv1 = nn.Conv2d(m, n, 3, padding=1)
self.norm2 = nn.GroupNorm(2 ** 5, n)
self.conv2 = nn.Conv2d(n, n, 3, padding=1)
if not self.is_middle:
self.nin_shortcut = nn.Conv2d(m, n, 1)
def forward(self, x: FloatTensor) -> FloatTensor:
h = x
h = self.norm1.forward(h)
h *= torch.sigmoid(h)
h = self.conv1.forward(h)
h = self.norm2.forward(h)
h *= torch.sigmoid(h)
h = self.conv2(h)
if not self.is_middle:
x = self.nin_shortcut.forward(x)
return x + h
class AttentionBlock(nn.Module):
def __init__(self):
super().__init__()
n = 2 ** 9
self.norm = nn.GroupNorm(2 ** 5, n)
self.q = nn.Conv2d(n, n, 1)
self.k = nn.Conv2d(n, n, 1)
self.v = nn.Conv2d(n, n, 1)
self.proj_out = nn.Conv2d(n, n, 1)
def forward(self, x: FloatTensor) -> FloatTensor:
n, m = 2 ** 9, x.shape[0]
h = x
h = self.norm(h)
k = self.k.forward(h)
v = self.v.forward(h)
q = self.q.forward(h)
k = k.reshape(m, n, -1)
v = v.reshape(m, n, -1)
q = q.reshape(m, n, -1)
q = q.permute(0, 2, 1)
w = torch.bmm(q, k)
w /= n ** 0.5
w = torch.softmax(w, dim=2)
w = w.permute(0, 2, 1)
h = torch.bmm(v, w)
token_count = int(sqrt(h.shape[-1]))
h = h.reshape(m, n, token_count, token_count)
h = self.proj_out.forward(h)
return x + h
class MiddleLayer(nn.Module):
def __init__(self):
super().__init__()
self.block_1 = ResnetBlock(9, 9)
self.attn_1 = AttentionBlock()
self.block_2 = ResnetBlock(9, 9)
def forward(self, h: FloatTensor) -> FloatTensor:
h = self.block_1.forward(h)
h = self.attn_1.forward(h)
h = self.block_2.forward(h)
return h
class Upsample(nn.Module):
def __init__(self, log2_count):
super().__init__()
n = 2 ** log2_count
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
self.conv = nn.Conv2d(n, n, 3, padding=1)
def forward(self, x: FloatTensor) -> FloatTensor:
x = self.upsample.forward(x.to(torch.float32))
x = self.conv.forward(x)
return x
class UpsampleBlock(nn.Module):
def __init__(
self,
log2_count_in: int,
log2_count_out: int,
has_attention: bool,
has_upsample: bool
):
super().__init__()
self.has_attention = has_attention
self.has_upsample = has_upsample
self.block = nn.ModuleList([
ResnetBlock(log2_count_in, log2_count_out),
ResnetBlock(log2_count_out, log2_count_out),
ResnetBlock(log2_count_out, log2_count_out)
])
if has_attention:
self.attn = nn.ModuleList([
AttentionBlock(),
AttentionBlock(),
AttentionBlock()
])
if has_upsample:
self.upsample = Upsample(log2_count_out)
def forward(self, h: FloatTensor) -> FloatTensor:
for j in range(3):
h = self.block[j].forward(h)
if self.has_attention:
h = self.attn[j].forward(h)
if self.has_upsample:
h = self.upsample.forward(h)
return h
class Decoder(nn.Module):
def __init__(self):
super().__init__()
self.conv_in = nn.Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
self.mid = MiddleLayer()
self.up = nn.ModuleList([
UpsampleBlock(7, 7, False, False),
UpsampleBlock(8, 7, False, True),
UpsampleBlock(8, 8, False, True),
UpsampleBlock(9, 8, False, True),
UpsampleBlock(9, 9, True, True)
])
self.norm_out = nn.GroupNorm(2 ** 5, 2 ** 7)
self.conv_out = nn.Conv2d(2 ** 7, 3, 3, padding=1)
def forward(self, z: FloatTensor) -> FloatTensor:
z = self.conv_in.forward(z)
z = self.mid.forward(z)
for i in reversed(range(5)):
z = self.up[i].forward(z)
z = self.norm_out.forward(z)
z *= torch.sigmoid(z)
z = self.conv_out.forward(z)
return z
class VQGanDetokenizer(nn.Module):
def __init__(self):
super().__init__()
vocab_count, embed_count = 2 ** 14, 2 ** 8
self.vocab_count = vocab_count
self.embedding = nn.Embedding(vocab_count, embed_count)
self.post_quant_conv = nn.Conv2d(embed_count, embed_count, 1)
self.decoder = Decoder()
def forward(self, is_seamless: bool, z: LongTensor) -> FloatTensor:
z.clamp_(0, self.vocab_count - 1)
grid_size = int(sqrt(z.shape[0]))
token_count = grid_size * 2 ** 4
if is_seamless:
z = z.view([grid_size, grid_size, 2 ** 4, 2 ** 4])
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
z = z.flatten().unsqueeze(1)
z = self.embedding.forward(z)
z = z.view((1, token_count, token_count, 2 ** 8))
else:
z = self.embedding.forward(z)
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
z = z.permute(0, 3, 1, 2).contiguous()
z = self.post_quant_conv.forward(z)
z = self.decoder.forward(z)
z = z.permute(0, 2, 3, 1)
z = z.clip(0.0, 1.0) * 255
if is_seamless:
z = z[0]
else:
z = z.view([grid_size, grid_size, 2 ** 8, 2 ** 8, 3])
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
return z