optionally tile images in token space
This commit is contained in:
parent
39376c9cf2
commit
798e6ac5a3
4
README.md
vendored
4
README.md
vendored
|
@ -62,7 +62,7 @@ display(image)
|
|||
Credit to [@hardmaru](https://twitter.com/hardmaru) for the [example](https://twitter.com/hardmaru/status/1544354119527596034)
|
||||
|
||||
|
||||
### Saving Individual Images
|
||||
<!-- ### Saving Individual Images
|
||||
The images can also be generated as a `FloatTensor` in case you want to process them manually.
|
||||
|
||||
```python
|
||||
|
@ -85,7 +85,7 @@ Then image $i$ can be coverted to a PIL.Image and saved
|
|||
```python
|
||||
image = Image.fromarray(images[i])
|
||||
image.save('image_{}.png'.format(i))
|
||||
```
|
||||
``` -->
|
||||
|
||||
### Progressive Outputs
|
||||
|
||||
|
|
2
cog.yaml
vendored
2
cog.yaml
vendored
|
@ -6,7 +6,7 @@ build:
|
|||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
python_packages:
|
||||
- "min-dalle==0.3.13"
|
||||
- "min-dalle==0.3.15"
|
||||
run:
|
||||
- pip install torch==1.12.0+cu116 -f https://download.pytorch.org/whl/torch_stable.html
|
||||
|
||||
|
|
|
@ -156,39 +156,34 @@ class MinDalle:
|
|||
self.detokenizer = self.detokenizer.to(device=self.device)
|
||||
|
||||
|
||||
def images_from_tokens(
|
||||
def image_grid_from_tokens(
|
||||
self,
|
||||
image_tokens: LongTensor,
|
||||
is_seamless: bool,
|
||||
is_verbose: bool = False
|
||||
) -> FloatTensor:
|
||||
if not self.is_reusable: del self.decoder
|
||||
torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if is_verbose: print("detokenizing image")
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
images = self.detokenizer.forward(is_seamless, image_tokens)
|
||||
if not self.is_reusable: del self.detokenizer
|
||||
return images
|
||||
|
||||
|
||||
def grid_from_images(self, images: FloatTensor) -> Image.Image:
|
||||
grid_size = int(sqrt(images.shape[0]))
|
||||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||
image = Image.fromarray(image.to('cpu').numpy())
|
||||
return image
|
||||
|
||||
|
||||
def generate_images_stream(
|
||||
def generate_image_stream(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
image_count: int,
|
||||
grid_size: int,
|
||||
progressive_outputs: bool = False,
|
||||
is_seamless: bool = False,
|
||||
temperature: float = 1,
|
||||
top_k: int = 256,
|
||||
supercondition_factor: int = 16,
|
||||
is_verbose: bool = False
|
||||
) -> Iterator[FloatTensor]:
|
||||
) -> Iterator[Image.Image]:
|
||||
image_count = grid_size ** 2
|
||||
if is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
|
||||
if len(tokens) > self.text_token_count:
|
||||
|
@ -254,58 +249,13 @@ class MinDalle:
|
|||
|
||||
with torch.cuda.amp.autocast(dtype=torch.float32):
|
||||
if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256:
|
||||
yield self.images_from_tokens(
|
||||
image_tokens=image_tokens[1:].T,
|
||||
image = self.image_grid_from_tokens(
|
||||
image_tokens=image_tokens[1:].T,
|
||||
is_seamless=is_seamless,
|
||||
is_verbose=is_verbose
|
||||
)
|
||||
|
||||
|
||||
def generate_image_stream(
|
||||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
grid_size: int,
|
||||
progressive_outputs: bool = False,
|
||||
temperature: float = 1,
|
||||
top_k: int = 256,
|
||||
supercondition_factor: int = 16,
|
||||
is_verbose: bool = False
|
||||
) -> Iterator[Image.Image]:
|
||||
images_stream = self.generate_images_stream(
|
||||
text=text,
|
||||
seed=seed,
|
||||
image_count=grid_size ** 2,
|
||||
progressive_outputs=progressive_outputs,
|
||||
temperature=temperature,
|
||||
top_k=top_k,
|
||||
supercondition_factor=supercondition_factor,
|
||||
is_verbose=is_verbose
|
||||
)
|
||||
for images in images_stream:
|
||||
yield self.grid_from_images(images)
|
||||
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
text: str,
|
||||
seed: int = -1,
|
||||
image_count: int = 1,
|
||||
temperature: float = 1,
|
||||
top_k: int = 1024,
|
||||
supercondition_factor: int = 16,
|
||||
is_verbose: bool = False
|
||||
) -> FloatTensor:
|
||||
images_stream = self.generate_images_stream(
|
||||
text=text,
|
||||
seed=seed,
|
||||
image_count=image_count,
|
||||
temperature=temperature,
|
||||
progressive_outputs=False,
|
||||
top_k=top_k,
|
||||
supercondition_factor=supercondition_factor,
|
||||
is_verbose=is_verbose
|
||||
)
|
||||
return next(images_stream)
|
||||
image = image.to(torch.uint8).to('cpu').numpy()
|
||||
yield Image.fromarray(image)
|
||||
|
||||
|
||||
def generate_image(
|
||||
|
@ -328,4 +278,55 @@ class MinDalle:
|
|||
supercondition_factor=supercondition_factor,
|
||||
is_verbose=is_verbose
|
||||
)
|
||||
return next(image_stream)
|
||||
return next(image_stream)
|
||||
|
||||
|
||||
# def images_from_image(image: Image.Image) -> FloatTensor:
|
||||
# pass
|
||||
|
||||
# def generate_images_stream(
|
||||
# self,
|
||||
# text: str,
|
||||
# seed: int,
|
||||
# grid_size: int,
|
||||
# progressive_outputs: bool = False,
|
||||
# temperature: float = 1,
|
||||
# top_k: int = 256,
|
||||
# supercondition_factor: int = 16,
|
||||
# is_verbose: bool = False
|
||||
# ) -> Iterator[FloatTensor]:
|
||||
# image_stream = self.generate_image_stream(
|
||||
# text=text,
|
||||
# seed=seed,
|
||||
# image_count=grid_size ** 2,
|
||||
# progressive_outputs=progressive_outputs,
|
||||
# is_seamless=False,
|
||||
# temperature=temperature,
|
||||
# top_k=top_k,
|
||||
# supercondition_factor=supercondition_factor,
|
||||
# is_verbose=is_verbose
|
||||
# )
|
||||
# for image in image_stream:
|
||||
# yield self.images_from_image(image)
|
||||
|
||||
# def generate_images(
|
||||
# self,
|
||||
# text: str,
|
||||
# seed: int = -1,
|
||||
# image_count: int = 1,
|
||||
# temperature: float = 1,
|
||||
# top_k: int = 1024,
|
||||
# supercondition_factor: int = 16,
|
||||
# is_verbose: bool = False
|
||||
# ) -> FloatTensor:
|
||||
# images_stream = self.generate_images_stream(
|
||||
# text=text,
|
||||
# seed=seed,
|
||||
# image_count=image_count,
|
||||
# temperature=temperature,
|
||||
# progressive_outputs=False,
|
||||
# top_k=top_k,
|
||||
# supercondition_factor=supercondition_factor,
|
||||
# is_verbose=is_verbose
|
||||
# )
|
||||
# return next(images_stream)
|
|
@ -1,19 +1,20 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
from torch import FloatTensor, LongTensor
|
||||
from torch.nn import Module, ModuleList, GroupNorm, Conv2d, Embedding
|
||||
from math import sqrt
|
||||
|
||||
|
||||
class ResnetBlock(Module):
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, log2_count_in: int, log2_count_out: int):
|
||||
super().__init__()
|
||||
m, n = 2 ** log2_count_in, 2 ** log2_count_out
|
||||
self.is_middle = m == n
|
||||
self.norm1 = GroupNorm(2 ** 5, m)
|
||||
self.conv1 = Conv2d(m, n, 3, padding=1)
|
||||
self.norm2 = GroupNorm(2 ** 5, n)
|
||||
self.conv2 = Conv2d(n, n, 3, padding=1)
|
||||
self.norm1 = nn.GroupNorm(2 ** 5, m)
|
||||
self.conv1 = nn.Conv2d(m, n, 3, padding=1)
|
||||
self.norm2 = nn.GroupNorm(2 ** 5, n)
|
||||
self.conv2 = nn.Conv2d(n, n, 3, padding=1)
|
||||
if not self.is_middle:
|
||||
self.nin_shortcut = Conv2d(m, n, 1)
|
||||
self.nin_shortcut = nn.Conv2d(m, n, 1)
|
||||
|
||||
def forward(self, x: FloatTensor) -> FloatTensor:
|
||||
h = x
|
||||
|
@ -28,38 +29,39 @@ class ResnetBlock(Module):
|
|||
return x + h
|
||||
|
||||
|
||||
class AttentionBlock(Module):
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
n = 2 ** 9
|
||||
self.norm = GroupNorm(2 ** 5, n)
|
||||
self.q = Conv2d(n, n, 1)
|
||||
self.k = Conv2d(n, n, 1)
|
||||
self.v = Conv2d(n, n, 1)
|
||||
self.proj_out = Conv2d(n, n, 1)
|
||||
self.norm = nn.GroupNorm(2 ** 5, n)
|
||||
self.q = nn.Conv2d(n, n, 1)
|
||||
self.k = nn.Conv2d(n, n, 1)
|
||||
self.v = nn.Conv2d(n, n, 1)
|
||||
self.proj_out = nn.Conv2d(n, n, 1)
|
||||
|
||||
def forward(self, x: FloatTensor) -> FloatTensor:
|
||||
n, m = 2 ** 9, x.shape[0]
|
||||
h = x
|
||||
h = self.norm(h)
|
||||
q = self.q.forward(h)
|
||||
k = self.k.forward(h)
|
||||
v = self.v.forward(h)
|
||||
q = q.reshape(m, n, 2 ** 8)
|
||||
q = self.q.forward(h)
|
||||
k = k.reshape(m, n, -1)
|
||||
v = v.reshape(m, n, -1)
|
||||
q = q.reshape(m, n, -1)
|
||||
q = q.permute(0, 2, 1)
|
||||
k = k.reshape(m, n, 2 ** 8)
|
||||
w = torch.bmm(q, k)
|
||||
w /= n ** 0.5
|
||||
w = torch.softmax(w, dim=2)
|
||||
v = v.reshape(m, n, 2 ** 8)
|
||||
w = w.permute(0, 2, 1)
|
||||
h = torch.bmm(v, w)
|
||||
h = h.reshape(m, n, 2 ** 4, 2 ** 4)
|
||||
token_count = int(sqrt(h.shape[-1]))
|
||||
h = h.reshape(m, n, token_count, token_count)
|
||||
h = self.proj_out.forward(h)
|
||||
return x + h
|
||||
|
||||
|
||||
class MiddleLayer(Module):
|
||||
class MiddleLayer(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.block_1 = ResnetBlock(9, 9)
|
||||
|
@ -73,12 +75,12 @@ class MiddleLayer(Module):
|
|||
return h
|
||||
|
||||
|
||||
class Upsample(Module):
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, log2_count):
|
||||
super().__init__()
|
||||
n = 2 ** log2_count
|
||||
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
|
||||
self.conv = Conv2d(n, n, 3, padding=1)
|
||||
self.conv = nn.Conv2d(n, n, 3, padding=1)
|
||||
|
||||
def forward(self, x: FloatTensor) -> FloatTensor:
|
||||
x = self.upsample.forward(x.to(torch.float32))
|
||||
|
@ -86,7 +88,7 @@ class Upsample(Module):
|
|||
return x
|
||||
|
||||
|
||||
class UpsampleBlock(Module):
|
||||
class UpsampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
log2_count_in: int,
|
||||
|
@ -97,19 +99,19 @@ class UpsampleBlock(Module):
|
|||
super().__init__()
|
||||
self.has_attention = has_attention
|
||||
self.has_upsample = has_upsample
|
||||
self.block = ModuleList([
|
||||
|
||||
self.block = nn.ModuleList([
|
||||
ResnetBlock(log2_count_in, log2_count_out),
|
||||
ResnetBlock(log2_count_out, log2_count_out),
|
||||
ResnetBlock(log2_count_out, log2_count_out)
|
||||
])
|
||||
|
||||
if has_attention:
|
||||
self.attn = ModuleList([
|
||||
self.attn = nn.ModuleList([
|
||||
AttentionBlock(),
|
||||
AttentionBlock(),
|
||||
AttentionBlock()
|
||||
])
|
||||
else:
|
||||
self.attn = ModuleList()
|
||||
|
||||
if has_upsample:
|
||||
self.upsample = Upsample(log2_count_out)
|
||||
|
@ -125,14 +127,14 @@ class UpsampleBlock(Module):
|
|||
return h
|
||||
|
||||
|
||||
class Decoder(Module):
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.conv_in = Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
|
||||
self.conv_in = nn.Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
|
||||
self.mid = MiddleLayer()
|
||||
|
||||
self.up = ModuleList([
|
||||
self.up = nn.ModuleList([
|
||||
UpsampleBlock(7, 7, False, False),
|
||||
UpsampleBlock(8, 7, False, True),
|
||||
UpsampleBlock(8, 8, False, True),
|
||||
|
@ -140,8 +142,8 @@ class Decoder(Module):
|
|||
UpsampleBlock(9, 9, True, True)
|
||||
])
|
||||
|
||||
self.norm_out = GroupNorm(2 ** 5, 2 ** 7)
|
||||
self.conv_out = Conv2d(2 ** 7, 3, 3, padding=1)
|
||||
self.norm_out = nn.GroupNorm(2 ** 5, 2 ** 7)
|
||||
self.conv_out = nn.Conv2d(2 ** 7, 3, 3, padding=1)
|
||||
|
||||
def forward(self, z: FloatTensor) -> FloatTensor:
|
||||
z = self.conv_in.forward(z)
|
||||
|
@ -156,22 +158,40 @@ class Decoder(Module):
|
|||
return z
|
||||
|
||||
|
||||
class VQGanDetokenizer(Module):
|
||||
class VQGanDetokenizer(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
vocab_count, embed_count = 2 ** 14, 2 ** 8
|
||||
self.vocab_count = vocab_count
|
||||
self.embedding = Embedding(vocab_count, embed_count)
|
||||
self.post_quant_conv = Conv2d(embed_count, embed_count, 1)
|
||||
self.embedding = nn.Embedding(vocab_count, embed_count)
|
||||
self.post_quant_conv = nn.Conv2d(embed_count, embed_count, 1)
|
||||
self.decoder = Decoder()
|
||||
|
||||
def forward(self, z: LongTensor) -> FloatTensor:
|
||||
def forward(self, is_seamless: bool, z: LongTensor) -> FloatTensor:
|
||||
z.clamp_(0, self.vocab_count - 1)
|
||||
z = self.embedding.forward(z)
|
||||
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
|
||||
grid_size = int(sqrt(z.shape[0]))
|
||||
token_count = grid_size * 2 ** 4
|
||||
|
||||
if is_seamless:
|
||||
z = z.view([grid_size, grid_size, 2 ** 4, 2 ** 4])
|
||||
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
||||
z = z.flatten().unsqueeze(1)
|
||||
z = self.embedding.forward(z)
|
||||
z = z.view((1, token_count, token_count, 2 ** 8))
|
||||
else:
|
||||
z = self.embedding.forward(z)
|
||||
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
|
||||
|
||||
z = z.permute(0, 3, 1, 2).contiguous()
|
||||
z = self.post_quant_conv.forward(z)
|
||||
z = self.decoder.forward(z)
|
||||
z = z.permute(0, 2, 3, 1)
|
||||
z = z.clip(0.0, 1.0) * 255
|
||||
|
||||
if is_seamless:
|
||||
z = z[0]
|
||||
else:
|
||||
z = z.view([grid_size, grid_size, 2 ** 8, 2 ** 8, 3])
|
||||
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
||||
|
||||
return z
|
||||
|
|
2
setup.py
2
setup.py
|
@ -5,7 +5,7 @@ setuptools.setup(
|
|||
name='min-dalle',
|
||||
description = 'min(DALL·E)',
|
||||
# long_description=(Path(__file__).parent / "README.rst").read_text(),
|
||||
version='0.3.13',
|
||||
version='0.3.15',
|
||||
author='Brett Kuprel',
|
||||
author_email='brkuprel@gmail.com',
|
||||
url='https://github.com/kuprel/min-dalle',
|
||||
|
|
|
@ -57,6 +57,7 @@ sv_prompt = tkinter.StringVar(value="artificial intelligence")
|
|||
sv_temperature = tkinter.StringVar(value="1")
|
||||
sv_topk = tkinter.StringVar(value="128")
|
||||
sv_supercond = tkinter.StringVar(value="16")
|
||||
bv_seamless = tkinter.BooleanVar(value=False)
|
||||
|
||||
def generate():
|
||||
# check fields
|
||||
|
@ -75,6 +76,10 @@ def generate():
|
|||
except:
|
||||
sv_supercond.set("ERROR")
|
||||
return
|
||||
try:
|
||||
is_seamless = bool(bv_seamless.get())
|
||||
except:
|
||||
return
|
||||
# and continue
|
||||
global label_image_content
|
||||
image_stream = model.generate_image_stream(
|
||||
|
@ -82,16 +87,22 @@ def generate():
|
|||
grid_size=2,
|
||||
seed=-1,
|
||||
progressive_outputs=True,
|
||||
is_seamless=is_seamless,
|
||||
temperature=temperature,
|
||||
top_k=topk,
|
||||
supercondition_factor=supercond,
|
||||
is_verbose=True
|
||||
)
|
||||
for image in image_stream:
|
||||
global final_image
|
||||
final_image = image
|
||||
label_image_content = PIL.ImageTk.PhotoImage(image)
|
||||
label_image.configure(image=label_image_content)
|
||||
label_image.update()
|
||||
|
||||
def save():
|
||||
final_image.save('out.png')
|
||||
|
||||
frm = ttk.Frame(root, padding=16)
|
||||
frm.grid()
|
||||
|
||||
|
@ -124,8 +135,14 @@ ttk.Label(props, text="Supercondition Factor:").grid(column=0, row=6)
|
|||
ttk.Entry(props, textvariable=sv_supercond).grid(column=1, row=6)
|
||||
#
|
||||
ttk.Label(props, image=padding_image).grid(column=0, row=7)
|
||||
# seamless
|
||||
ttk.Label(props, text="Seamless:").grid(column=0, row=8)
|
||||
ttk.Checkbutton(props, variable=bv_seamless).grid(column=1, row=8)
|
||||
#
|
||||
ttk.Label(props, image=padding_image).grid(column=0, row=9)
|
||||
# buttons
|
||||
ttk.Button(props, text="Generate", command=generate).grid(column=0, row=8)
|
||||
ttk.Button(props, text="Quit", command=root.destroy).grid(column=1, row=8)
|
||||
ttk.Button(props, text="Generate", command=generate).grid(column=0, row=10)
|
||||
ttk.Button(props, text="Quit", command=root.destroy).grid(column=1, row=10)
|
||||
ttk.Button(props, text="Save", command=save).grid(column=2, row=10)
|
||||
|
||||
root.mainloop()
|
Loading…
Reference in New Issue
Block a user