optionally tile images in token space

This commit is contained in:
Brett Kuprel 2022-07-17 07:33:31 -04:00
parent 39376c9cf2
commit 798e6ac5a3
6 changed files with 145 additions and 107 deletions

4
README.md vendored
View File

@ -62,7 +62,7 @@ display(image)
Credit to [@hardmaru](https://twitter.com/hardmaru) for the [example](https://twitter.com/hardmaru/status/1544354119527596034)
### Saving Individual Images
<!-- ### Saving Individual Images
The images can also be generated as a `FloatTensor` in case you want to process them manually.
```python
@ -85,7 +85,7 @@ Then image $i$ can be coverted to a PIL.Image and saved
```python
image = Image.fromarray(images[i])
image.save('image_{}.png'.format(i))
```
``` -->
### Progressive Outputs

2
cog.yaml vendored
View File

@ -6,7 +6,7 @@ build:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "min-dalle==0.3.13"
- "min-dalle==0.3.15"
run:
- pip install torch==1.12.0+cu116 -f https://download.pytorch.org/whl/torch_stable.html

View File

@ -156,39 +156,34 @@ class MinDalle:
self.detokenizer = self.detokenizer.to(device=self.device)
def images_from_tokens(
def image_grid_from_tokens(
self,
image_tokens: LongTensor,
is_seamless: bool,
is_verbose: bool = False
) -> FloatTensor:
if not self.is_reusable: del self.decoder
torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if is_verbose: print("detokenizing image")
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
images = self.detokenizer.forward(is_seamless, image_tokens)
if not self.is_reusable: del self.detokenizer
return images
def grid_from_images(self, images: FloatTensor) -> Image.Image:
grid_size = int(sqrt(images.shape[0]))
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
image = Image.fromarray(image.to('cpu').numpy())
return image
def generate_images_stream(
def generate_image_stream(
self,
text: str,
seed: int,
image_count: int,
grid_size: int,
progressive_outputs: bool = False,
is_seamless: bool = False,
temperature: float = 1,
top_k: int = 256,
supercondition_factor: int = 16,
is_verbose: bool = False
) -> Iterator[FloatTensor]:
) -> Iterator[Image.Image]:
image_count = grid_size ** 2
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
if len(tokens) > self.text_token_count:
@ -254,58 +249,13 @@ class MinDalle:
with torch.cuda.amp.autocast(dtype=torch.float32):
if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256:
yield self.images_from_tokens(
image_tokens=image_tokens[1:].T,
image = self.image_grid_from_tokens(
image_tokens=image_tokens[1:].T,
is_seamless=is_seamless,
is_verbose=is_verbose
)
def generate_image_stream(
self,
text: str,
seed: int,
grid_size: int,
progressive_outputs: bool = False,
temperature: float = 1,
top_k: int = 256,
supercondition_factor: int = 16,
is_verbose: bool = False
) -> Iterator[Image.Image]:
images_stream = self.generate_images_stream(
text=text,
seed=seed,
image_count=grid_size ** 2,
progressive_outputs=progressive_outputs,
temperature=temperature,
top_k=top_k,
supercondition_factor=supercondition_factor,
is_verbose=is_verbose
)
for images in images_stream:
yield self.grid_from_images(images)
def generate_images(
self,
text: str,
seed: int = -1,
image_count: int = 1,
temperature: float = 1,
top_k: int = 1024,
supercondition_factor: int = 16,
is_verbose: bool = False
) -> FloatTensor:
images_stream = self.generate_images_stream(
text=text,
seed=seed,
image_count=image_count,
temperature=temperature,
progressive_outputs=False,
top_k=top_k,
supercondition_factor=supercondition_factor,
is_verbose=is_verbose
)
return next(images_stream)
image = image.to(torch.uint8).to('cpu').numpy()
yield Image.fromarray(image)
def generate_image(
@ -328,4 +278,55 @@ class MinDalle:
supercondition_factor=supercondition_factor,
is_verbose=is_verbose
)
return next(image_stream)
return next(image_stream)
# def images_from_image(image: Image.Image) -> FloatTensor:
# pass
# def generate_images_stream(
# self,
# text: str,
# seed: int,
# grid_size: int,
# progressive_outputs: bool = False,
# temperature: float = 1,
# top_k: int = 256,
# supercondition_factor: int = 16,
# is_verbose: bool = False
# ) -> Iterator[FloatTensor]:
# image_stream = self.generate_image_stream(
# text=text,
# seed=seed,
# image_count=grid_size ** 2,
# progressive_outputs=progressive_outputs,
# is_seamless=False,
# temperature=temperature,
# top_k=top_k,
# supercondition_factor=supercondition_factor,
# is_verbose=is_verbose
# )
# for image in image_stream:
# yield self.images_from_image(image)
# def generate_images(
# self,
# text: str,
# seed: int = -1,
# image_count: int = 1,
# temperature: float = 1,
# top_k: int = 1024,
# supercondition_factor: int = 16,
# is_verbose: bool = False
# ) -> FloatTensor:
# images_stream = self.generate_images_stream(
# text=text,
# seed=seed,
# image_count=image_count,
# temperature=temperature,
# progressive_outputs=False,
# top_k=top_k,
# supercondition_factor=supercondition_factor,
# is_verbose=is_verbose
# )
# return next(images_stream)

View File

@ -1,19 +1,20 @@
import torch
from torch import nn
from torch import FloatTensor, LongTensor
from torch.nn import Module, ModuleList, GroupNorm, Conv2d, Embedding
from math import sqrt
class ResnetBlock(Module):
class ResnetBlock(nn.Module):
def __init__(self, log2_count_in: int, log2_count_out: int):
super().__init__()
m, n = 2 ** log2_count_in, 2 ** log2_count_out
self.is_middle = m == n
self.norm1 = GroupNorm(2 ** 5, m)
self.conv1 = Conv2d(m, n, 3, padding=1)
self.norm2 = GroupNorm(2 ** 5, n)
self.conv2 = Conv2d(n, n, 3, padding=1)
self.norm1 = nn.GroupNorm(2 ** 5, m)
self.conv1 = nn.Conv2d(m, n, 3, padding=1)
self.norm2 = nn.GroupNorm(2 ** 5, n)
self.conv2 = nn.Conv2d(n, n, 3, padding=1)
if not self.is_middle:
self.nin_shortcut = Conv2d(m, n, 1)
self.nin_shortcut = nn.Conv2d(m, n, 1)
def forward(self, x: FloatTensor) -> FloatTensor:
h = x
@ -28,38 +29,39 @@ class ResnetBlock(Module):
return x + h
class AttentionBlock(Module):
class AttentionBlock(nn.Module):
def __init__(self):
super().__init__()
n = 2 ** 9
self.norm = GroupNorm(2 ** 5, n)
self.q = Conv2d(n, n, 1)
self.k = Conv2d(n, n, 1)
self.v = Conv2d(n, n, 1)
self.proj_out = Conv2d(n, n, 1)
self.norm = nn.GroupNorm(2 ** 5, n)
self.q = nn.Conv2d(n, n, 1)
self.k = nn.Conv2d(n, n, 1)
self.v = nn.Conv2d(n, n, 1)
self.proj_out = nn.Conv2d(n, n, 1)
def forward(self, x: FloatTensor) -> FloatTensor:
n, m = 2 ** 9, x.shape[0]
h = x
h = self.norm(h)
q = self.q.forward(h)
k = self.k.forward(h)
v = self.v.forward(h)
q = q.reshape(m, n, 2 ** 8)
q = self.q.forward(h)
k = k.reshape(m, n, -1)
v = v.reshape(m, n, -1)
q = q.reshape(m, n, -1)
q = q.permute(0, 2, 1)
k = k.reshape(m, n, 2 ** 8)
w = torch.bmm(q, k)
w /= n ** 0.5
w = torch.softmax(w, dim=2)
v = v.reshape(m, n, 2 ** 8)
w = w.permute(0, 2, 1)
h = torch.bmm(v, w)
h = h.reshape(m, n, 2 ** 4, 2 ** 4)
token_count = int(sqrt(h.shape[-1]))
h = h.reshape(m, n, token_count, token_count)
h = self.proj_out.forward(h)
return x + h
class MiddleLayer(Module):
class MiddleLayer(nn.Module):
def __init__(self):
super().__init__()
self.block_1 = ResnetBlock(9, 9)
@ -73,12 +75,12 @@ class MiddleLayer(Module):
return h
class Upsample(Module):
class Upsample(nn.Module):
def __init__(self, log2_count):
super().__init__()
n = 2 ** log2_count
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
self.conv = Conv2d(n, n, 3, padding=1)
self.conv = nn.Conv2d(n, n, 3, padding=1)
def forward(self, x: FloatTensor) -> FloatTensor:
x = self.upsample.forward(x.to(torch.float32))
@ -86,7 +88,7 @@ class Upsample(Module):
return x
class UpsampleBlock(Module):
class UpsampleBlock(nn.Module):
def __init__(
self,
log2_count_in: int,
@ -97,19 +99,19 @@ class UpsampleBlock(Module):
super().__init__()
self.has_attention = has_attention
self.has_upsample = has_upsample
self.block = ModuleList([
self.block = nn.ModuleList([
ResnetBlock(log2_count_in, log2_count_out),
ResnetBlock(log2_count_out, log2_count_out),
ResnetBlock(log2_count_out, log2_count_out)
])
if has_attention:
self.attn = ModuleList([
self.attn = nn.ModuleList([
AttentionBlock(),
AttentionBlock(),
AttentionBlock()
])
else:
self.attn = ModuleList()
if has_upsample:
self.upsample = Upsample(log2_count_out)
@ -125,14 +127,14 @@ class UpsampleBlock(Module):
return h
class Decoder(Module):
class Decoder(nn.Module):
def __init__(self):
super().__init__()
self.conv_in = Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
self.conv_in = nn.Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
self.mid = MiddleLayer()
self.up = ModuleList([
self.up = nn.ModuleList([
UpsampleBlock(7, 7, False, False),
UpsampleBlock(8, 7, False, True),
UpsampleBlock(8, 8, False, True),
@ -140,8 +142,8 @@ class Decoder(Module):
UpsampleBlock(9, 9, True, True)
])
self.norm_out = GroupNorm(2 ** 5, 2 ** 7)
self.conv_out = Conv2d(2 ** 7, 3, 3, padding=1)
self.norm_out = nn.GroupNorm(2 ** 5, 2 ** 7)
self.conv_out = nn.Conv2d(2 ** 7, 3, 3, padding=1)
def forward(self, z: FloatTensor) -> FloatTensor:
z = self.conv_in.forward(z)
@ -156,22 +158,40 @@ class Decoder(Module):
return z
class VQGanDetokenizer(Module):
class VQGanDetokenizer(nn.Module):
def __init__(self):
super().__init__()
vocab_count, embed_count = 2 ** 14, 2 ** 8
self.vocab_count = vocab_count
self.embedding = Embedding(vocab_count, embed_count)
self.post_quant_conv = Conv2d(embed_count, embed_count, 1)
self.embedding = nn.Embedding(vocab_count, embed_count)
self.post_quant_conv = nn.Conv2d(embed_count, embed_count, 1)
self.decoder = Decoder()
def forward(self, z: LongTensor) -> FloatTensor:
def forward(self, is_seamless: bool, z: LongTensor) -> FloatTensor:
z.clamp_(0, self.vocab_count - 1)
z = self.embedding.forward(z)
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
grid_size = int(sqrt(z.shape[0]))
token_count = grid_size * 2 ** 4
if is_seamless:
z = z.view([grid_size, grid_size, 2 ** 4, 2 ** 4])
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
z = z.flatten().unsqueeze(1)
z = self.embedding.forward(z)
z = z.view((1, token_count, token_count, 2 ** 8))
else:
z = self.embedding.forward(z)
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
z = z.permute(0, 3, 1, 2).contiguous()
z = self.post_quant_conv.forward(z)
z = self.decoder.forward(z)
z = z.permute(0, 2, 3, 1)
z = z.clip(0.0, 1.0) * 255
if is_seamless:
z = z[0]
else:
z = z.view([grid_size, grid_size, 2 ** 8, 2 ** 8, 3])
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
return z

View File

@ -5,7 +5,7 @@ setuptools.setup(
name='min-dalle',
description = 'min(DALL·E)',
# long_description=(Path(__file__).parent / "README.rst").read_text(),
version='0.3.13',
version='0.3.15',
author='Brett Kuprel',
author_email='brkuprel@gmail.com',
url='https://github.com/kuprel/min-dalle',

View File

@ -57,6 +57,7 @@ sv_prompt = tkinter.StringVar(value="artificial intelligence")
sv_temperature = tkinter.StringVar(value="1")
sv_topk = tkinter.StringVar(value="128")
sv_supercond = tkinter.StringVar(value="16")
bv_seamless = tkinter.BooleanVar(value=False)
def generate():
# check fields
@ -75,6 +76,10 @@ def generate():
except:
sv_supercond.set("ERROR")
return
try:
is_seamless = bool(bv_seamless.get())
except:
return
# and continue
global label_image_content
image_stream = model.generate_image_stream(
@ -82,16 +87,22 @@ def generate():
grid_size=2,
seed=-1,
progressive_outputs=True,
is_seamless=is_seamless,
temperature=temperature,
top_k=topk,
supercondition_factor=supercond,
is_verbose=True
)
for image in image_stream:
global final_image
final_image = image
label_image_content = PIL.ImageTk.PhotoImage(image)
label_image.configure(image=label_image_content)
label_image.update()
def save():
final_image.save('out.png')
frm = ttk.Frame(root, padding=16)
frm.grid()
@ -124,8 +135,14 @@ ttk.Label(props, text="Supercondition Factor:").grid(column=0, row=6)
ttk.Entry(props, textvariable=sv_supercond).grid(column=1, row=6)
#
ttk.Label(props, image=padding_image).grid(column=0, row=7)
# seamless
ttk.Label(props, text="Seamless:").grid(column=0, row=8)
ttk.Checkbutton(props, variable=bv_seamless).grid(column=1, row=8)
#
ttk.Label(props, image=padding_image).grid(column=0, row=9)
# buttons
ttk.Button(props, text="Generate", command=generate).grid(column=0, row=8)
ttk.Button(props, text="Quit", command=root.destroy).grid(column=1, row=8)
ttk.Button(props, text="Generate", command=generate).grid(column=0, row=10)
ttk.Button(props, text="Quit", command=root.destroy).grid(column=1, row=10)
ttk.Button(props, text="Save", command=save).grid(column=2, row=10)
root.mainloop()