Move World class into its own file

This commit is contained in:
Tanner Collin 2021-04-23 00:18:53 +00:00
parent 221d497204
commit 9874e23aa6
3 changed files with 316 additions and 307 deletions

View File

@ -26,6 +26,7 @@ from munch import Munch
from mosfet import blocks from mosfet import blocks
from mosfet import game from mosfet import game
from mosfet import world
from mosfet import items from mosfet import items
from mosfet import job from mosfet import job
from mosfet import mcdata from mosfet import mcdata
@ -264,7 +265,7 @@ def bot(global_state):
g.chat = ChatManager(g) g.chat = ChatManager(g)
g.game = game.Game(g) g.game = game.Game(g)
g.world = game.MCWorld(g) g.world = world.World(g)
try: try:
while not g.pos: while not g.pos:

View File

@ -2,11 +2,9 @@ import re
import time import time
import importlib import importlib
import random import random
import functools
from math import hypot from math import hypot
from itertools import count from itertools import count
from munch import Munch from munch import Munch
from copy import copy
from minecraft.networking.packets import Packet, clientbound, serverbound from minecraft.networking.packets import Packet, clientbound, serverbound
from minecraft.networking.types import BlockFace from minecraft.networking.types import BlockFace
@ -34,310 +32,6 @@ from mosfet import mobs
from mosfet import bot from mosfet import bot
from mosfet import vector from mosfet import vector
class MCWorld:
def __init__(self, global_state):
self.g = global_state
def block_at(self, x, y, z):
return self.g.chunks.get_block_at(x, y, z)
def check_air_column(self, pos, distance):
for i in range(distance):
check = utils.padd(pos, (0, i, 0))
if self.block_at(*check) not in blocks.NON_SOLID_IDS:
return False
return True
def find_blocks_3d(self, center, block_ids, distance=0, y_limit=0):
for offset in utils.search_3d(distance, y_limit):
check = utils.padd(center, offset)
if self.block_at(*check) in block_ids:
yield check
def find_blocks_indexed(self, center, block_ids, distance=0):
print('finding', block_ids)
index = []
for bid in block_ids:
index.extend(self.g.chunks.index.get(bid, []))
print('index', index)
result = []
for block in index:
if self.block_at(*block) not in block_ids:
continue
if distance and utils.phyp(center, block) > distance:
continue
if block not in result:
result.append(block)
result.sort(key=lambda x: utils.phyp(center, x))
return result
def find_blocks(self, center, distance, block_ids, limit=0):
# search in a spiral from center to all blocks with ID
result = []
for n in count():
offset = utils.spiral(n)
check = utils.padd(center, offset)
if self.block_at(*check) in block_ids:
if hypot(*offset) < distance:
result.append(check)
if limit and len(result) == limit:
return result
if offset[0] > distance:
return result
def find_trees(self, center, distance):
found_trees = []
for log in self.find_blocks_3d(center, blocks.LOG_IDS, distance, 15):
# crawl to the bottom log
while self.block_at(*utils.padd(log, path.BLOCK_BELOW)) in blocks.LOG_IDS:
log = utils.padd(log, path.BLOCK_BELOW)
base = log
if base in found_trees:
continue
# make sure we are on the ground
if self.block_at(*utils.padd(base, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS:
continue
# crawl to the top log to count and check leaves
log_count = 1
good_leaves = False
while self.block_at(*utils.padd(log, path.BLOCK_ABOVE)) in blocks.LOG_IDS:
log = utils.padd(log, path.BLOCK_ABOVE)
log_count += 1
for offset in path.CHECK_DIRECTIONS:
if self.block_at(*utils.padd(log, offset)) in blocks.LEAF_IDS:
good_leaves = True
# make sure it's a good tree
if not good_leaves or log_count < 3:
continue
found_trees.append(base)
yield base
def find_tree_openings(self, tree):
# returns coords in a cardinal direction where we can stand by tree
maze_solver = path.Pathfinder(self.g)
result = []
# TODO: make sure only non-solid and leaves between
# make sure traversable too and non-avoid
for distance in range(5):
for direction in path.CHECK_DIRECTIONS:
offset = utils.pmul(direction, distance+1)
if maze_solver.check_traverse(tree, offset):
result.append(utils.padd(tree, offset))
return result
def path_to_place(self, start, place):
maze_solver = path.Pathfinder(self.g)
try:
s = maze_solver.astar(start, place)
return list(s) if s else None
except path.AStarTimeout:
return None
def find_bed_areas(self, center, distance):
bed_clearance = 9 # 5x5 area
clear_distance = 2
for a in self.find_blocks_3d(center, [0], distance, 50):
# check for air around the area
if len(self.find_blocks(a, clear_distance, [0], bed_clearance)) < bed_clearance:
continue
# check for ground around the area
if len(self.find_blocks(utils.padd(a, path.BLOCK_BELOW), clear_distance, blocks.NON_SOLID_IDS, bed_clearance)):
continue
# check for air above the area
if len(self.find_blocks(utils.padd(a, path.BLOCK_ABOVE), clear_distance, [0], bed_clearance)) < bed_clearance:
continue
# ensure there's no monsters within 20 blocks
# can't sleep if they are within 10, good to have a buffer
if self.find_monsters(a, 20):
continue
yield a
def find_cache_areas(self, center, distance):
return self.find_bed_areas(center, distance)
def sand_adjacent_safe(self, sand):
for direction in path.CHECK_DIRECTIONS:
if self.block_at(*utils.padd(sand, direction)) in blocks.AVOID_IDS:
return False
return True
def find_sand(self, center, distance, player):
sand = []
sand.extend(self.find_blocks(center, distance, [blocks.SAND], 25))
safe_sand = []
for s in sand:
# make sure it has solid below
if self.block_at(*utils.padd(s, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS:
continue
# make sure it has solid two below - prevent hanging sand
if self.block_at(*utils.padd(s, path.BLOCK_BELOW2)) in blocks.NON_SOLID_IDS:
continue
# and walkable air above
if self.block_at(*utils.padd(s, path.BLOCK_ABOVE)) not in blocks.NON_SOLID_IDS:
continue
if not self.sand_adjacent_safe(s):
continue
safe_sand.append(s)
safe_sand.sort(key=lambda x: utils.phyp(player, x))
return safe_sand
def check_sand_slice(self, center):
# checks if a 5x5x1 slice has sand in it
for i in range(9):
s = utils.padd(center, utils.spiral(i))
if self.block_at(*s) != blocks.SAND:
continue
# make sure it has solid below
if self.block_at(*utils.padd(s, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS:
continue
# make sure it has solid two below - prevent hanging sand
if self.block_at(*utils.padd(s, path.BLOCK_BELOW2)) in blocks.NON_SOLID_IDS:
continue
# and walkable air above
if self.block_at(*utils.padd(s, path.BLOCK_ABOVE)) not in blocks.NON_SOLID_IDS:
continue
if not self.sand_adjacent_safe(s):
continue
return True
return False
def find_sand_slice(self, center, distance, y_limit=0, bad_slices=[], prev_layer=0):
# returns the centre coord of the next 5x5x1 slice that still has
# diggable sand in it. lower slices are only valid if there's an
# adjacent slice farther at the same level. this should ensure an
# upside down pyramid gets excavated so the edges are still climbable
for v in count(prev_layer):
peak = utils.padd(center, (0, 10-v, 0))
slices = []
layer = 0
for step in count():
offset = utils.spiral(step)
layer = max(layer, *offset)
offset = utils.pmul(offset, 3)
check = utils.padd(peak, offset)
check = utils.padd(check, (0, layer, 0))
if y_limit and check[1] - center[1] > y_limit:
break
if utils.phyp_king(center, check) > distance:
break
if self.check_sand_slice(check) and check not in bad_slices:
slices.append(check)
if len(slices):
return v, slices[-1]
elif v > 40:
return None, None
def find_bed_openings(self, area):
# returns coords in a cardinal direction where we can stand by bed
result = []
for direction in path.CHECK_DIRECTIONS:
result.append(utils.padd(area, direction))
return result
def find_cache_openings(self, area):
return self.find_bed_openings(area)
def find_objects(self, object_ids):
result = []
for eid, obj in copy(self.g.objects).items():
if obj.get('item_id', None) in object_ids:
result.append(obj)
return result
def find_leaves(self, center, distance):
for a in self.find_blocks_3d(center, blocks.LEAF_IDS, distance, 10):
yield a
def find_monsters(self, center, distance):
# finds monsters within distance
result = []
for eid, mob in copy(self.g.mobs).items():
if mob.type not in mobs.EVIL_IDS:
continue
pos = utils.pint((mob.x, mob.y, mob.z))
if utils.phyp(center, pos) > distance:
continue
result.append(mob)
return result
def find_threats(self, center, distance):
# finds monsters on the surface within distance
monsters = self.find_monsters(center, distance)
result = []
for mob in monsters:
pos = utils.pint((mob.x, mob.y, mob.z))
# check distance number of blocks above, close enough?
if not self.check_air_column(pos, distance):
continue
result.append(mob)
return result
def find_villagers(self, center, distance):
# finds villagers within distance
result = []
for eid, mob in copy(self.g.mobs).items():
type_name = mobs.MOB_NAMES[mob.type]
if type_name != 'villager' : continue
pos = utils.pint((mob.x, mob.y, mob.z))
if utils.phyp(center, pos) > distance:
continue
result.append(mob)
return result
def find_villager_openings(self, villager):
# returns coords in a cardinal direction where we can stand by a villager
maze_solver = path.Pathfinder(self.g)
result = []
for distance in range(3):
for direction in path.CHECK_DIRECTIONS:
offset = utils.pmul(direction, distance+1)
if not maze_solver.check_traverse(villager, offset):
continue
# check for line of sight
for check in range(distance+1):
offset2 = utils.pmul(direction, check+1)
offset2 = utils.padd(offset2, path.BLOCK_ABOVE)
check = utils.padd(villager, offset2)
if self.block_at(*check) not in blocks.NON_SOLID_IDS:
break
else: # for
result.append(utils.padd(villager, offset))
return result
class Game: class Game:
def __init__(self, global_state): def __init__(self, global_state):
self.g = global_state self.g = global_state

314
mosfet/world.py Normal file
View File

@ -0,0 +1,314 @@
import re
import time
import random
from math import hypot
from itertools import count
from copy import copy
from mosfet import utils
from mosfet import path
from mosfet import blocks
from mosfet import mobs
class World:
def __init__(self, global_state):
self.g = global_state
def block_at(self, x, y, z):
return self.g.chunks.get_block_at(x, y, z)
def check_air_column(self, pos, distance):
for i in range(distance):
check = utils.padd(pos, (0, i, 0))
if self.block_at(*check) not in blocks.NON_SOLID_IDS:
return False
return True
def find_blocks_3d(self, center, block_ids, distance=0, y_limit=0):
for offset in utils.search_3d(distance, y_limit):
check = utils.padd(center, offset)
if self.block_at(*check) in block_ids:
yield check
def find_blocks_indexed(self, center, block_ids, distance=0):
print('finding', block_ids)
index = []
for bid in block_ids:
index.extend(self.g.chunks.index.get(bid, []))
print('index', index)
result = []
for block in index:
if self.block_at(*block) not in block_ids:
continue
if distance and utils.phyp(center, block) > distance:
continue
if block not in result:
result.append(block)
result.sort(key=lambda x: utils.phyp(center, x))
return result
def find_blocks(self, center, distance, block_ids, limit=0):
# search in a spiral from center to all blocks with ID
result = []
for n in count():
offset = utils.spiral(n)
check = utils.padd(center, offset)
if self.block_at(*check) in block_ids:
if hypot(*offset) < distance:
result.append(check)
if limit and len(result) == limit:
return result
if offset[0] > distance:
return result
def find_trees(self, center, distance):
found_trees = []
for log in self.find_blocks_3d(center, blocks.LOG_IDS, distance, 15):
# crawl to the bottom log
while self.block_at(*utils.padd(log, path.BLOCK_BELOW)) in blocks.LOG_IDS:
log = utils.padd(log, path.BLOCK_BELOW)
base = log
if base in found_trees:
continue
# make sure we are on the ground
if self.block_at(*utils.padd(base, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS:
continue
# crawl to the top log to count and check leaves
log_count = 1
good_leaves = False
while self.block_at(*utils.padd(log, path.BLOCK_ABOVE)) in blocks.LOG_IDS:
log = utils.padd(log, path.BLOCK_ABOVE)
log_count += 1
for offset in path.CHECK_DIRECTIONS:
if self.block_at(*utils.padd(log, offset)) in blocks.LEAF_IDS:
good_leaves = True
# make sure it's a good tree
if not good_leaves or log_count < 3:
continue
found_trees.append(base)
yield base
def find_tree_openings(self, tree):
# returns coords in a cardinal direction where we can stand by tree
maze_solver = path.Pathfinder(self.g)
result = []
# TODO: make sure only non-solid and leaves between
# make sure traversable too and non-avoid
for distance in range(5):
for direction in path.CHECK_DIRECTIONS:
offset = utils.pmul(direction, distance+1)
if maze_solver.check_traverse(tree, offset):
result.append(utils.padd(tree, offset))
return result
def path_to_place(self, start, place):
maze_solver = path.Pathfinder(self.g)
try:
s = maze_solver.astar(start, place)
return list(s) if s else None
except path.AStarTimeout:
return None
def find_bed_areas(self, center, distance):
bed_clearance = 9 # 5x5 area
clear_distance = 2
for a in self.find_blocks_3d(center, [0], distance, 50):
# check for air around the area
if len(self.find_blocks(a, clear_distance, [0], bed_clearance)) < bed_clearance:
continue
# check for ground around the area
if len(self.find_blocks(utils.padd(a, path.BLOCK_BELOW), clear_distance, blocks.NON_SOLID_IDS, bed_clearance)):
continue
# check for air above the area
if len(self.find_blocks(utils.padd(a, path.BLOCK_ABOVE), clear_distance, [0], bed_clearance)) < bed_clearance:
continue
# ensure there's no monsters within 20 blocks
# can't sleep if they are within 10, good to have a buffer
if self.find_monsters(a, 20):
continue
yield a
def find_cache_areas(self, center, distance):
return self.find_bed_areas(center, distance)
def sand_adjacent_safe(self, sand):
for direction in path.CHECK_DIRECTIONS:
if self.block_at(*utils.padd(sand, direction)) in blocks.AVOID_IDS:
return False
return True
def find_sand(self, center, distance, player):
sand = []
sand.extend(self.find_blocks(center, distance, [blocks.SAND], 25))
safe_sand = []
for s in sand:
# make sure it has solid below
if self.block_at(*utils.padd(s, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS:
continue
# make sure it has solid two below - prevent hanging sand
if self.block_at(*utils.padd(s, path.BLOCK_BELOW2)) in blocks.NON_SOLID_IDS:
continue
# and walkable air above
if self.block_at(*utils.padd(s, path.BLOCK_ABOVE)) not in blocks.NON_SOLID_IDS:
continue
if not self.sand_adjacent_safe(s):
continue
safe_sand.append(s)
safe_sand.sort(key=lambda x: utils.phyp(player, x))
return safe_sand
def check_sand_slice(self, center):
# checks if a 5x5x1 slice has sand in it
for i in range(9):
s = utils.padd(center, utils.spiral(i))
if self.block_at(*s) != blocks.SAND:
continue
# make sure it has solid below
if self.block_at(*utils.padd(s, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS:
continue
# make sure it has solid two below - prevent hanging sand
if self.block_at(*utils.padd(s, path.BLOCK_BELOW2)) in blocks.NON_SOLID_IDS:
continue
# and walkable air above
if self.block_at(*utils.padd(s, path.BLOCK_ABOVE)) not in blocks.NON_SOLID_IDS:
continue
if not self.sand_adjacent_safe(s):
continue
return True
return False
def find_sand_slice(self, center, distance, y_limit=0, bad_slices=[], prev_layer=0):
# returns the centre coord of the next 5x5x1 slice that still has
# diggable sand in it. lower slices are only valid if there's an
# adjacent slice farther at the same level. this should ensure an
# upside down pyramid gets excavated so the edges are still climbable
for v in count(prev_layer):
peak = utils.padd(center, (0, 10-v, 0))
slices = []
layer = 0
for step in count():
offset = utils.spiral(step)
layer = max(layer, *offset)
offset = utils.pmul(offset, 3)
check = utils.padd(peak, offset)
check = utils.padd(check, (0, layer, 0))
if y_limit and check[1] - center[1] > y_limit:
break
if utils.phyp_king(center, check) > distance:
break
if self.check_sand_slice(check) and check not in bad_slices:
slices.append(check)
if len(slices):
return v, slices[-1]
elif v > 40:
return None, None
def find_bed_openings(self, area):
# returns coords in a cardinal direction where we can stand by bed
result = []
for direction in path.CHECK_DIRECTIONS:
result.append(utils.padd(area, direction))
return result
def find_cache_openings(self, area):
return self.find_bed_openings(area)
def find_objects(self, object_ids):
result = []
for eid, obj in copy(self.g.objects).items():
if obj.get('item_id', None) in object_ids:
result.append(obj)
return result
def find_leaves(self, center, distance):
for a in self.find_blocks_3d(center, blocks.LEAF_IDS, distance, 10):
yield a
def find_monsters(self, center, distance):
# finds monsters within distance
result = []
for eid, mob in copy(self.g.mobs).items():
if mob.type not in mobs.EVIL_IDS:
continue
pos = utils.pint((mob.x, mob.y, mob.z))
if utils.phyp(center, pos) > distance:
continue
result.append(mob)
return result
def find_threats(self, center, distance):
# finds monsters on the surface within distance
monsters = self.find_monsters(center, distance)
result = []
for mob in monsters:
pos = utils.pint((mob.x, mob.y, mob.z))
# check distance number of blocks above, close enough?
if not self.check_air_column(pos, distance):
continue
result.append(mob)
return result
def find_villagers(self, center, distance):
# finds villagers within distance
result = []
for eid, mob in copy(self.g.mobs).items():
type_name = mobs.MOB_NAMES[mob.type]
if type_name != 'villager' : continue
pos = utils.pint((mob.x, mob.y, mob.z))
if utils.phyp(center, pos) > distance:
continue
result.append(mob)
return result
def find_villager_openings(self, villager):
# returns coords in a cardinal direction where we can stand by a villager
maze_solver = path.Pathfinder(self.g)
result = []
for distance in range(3):
for direction in path.CHECK_DIRECTIONS:
offset = utils.pmul(direction, distance+1)
if not maze_solver.check_traverse(villager, offset):
continue
# check for line of sight
for check in range(distance+1):
offset2 = utils.pmul(direction, check+1)
offset2 = utils.padd(offset2, path.BLOCK_ABOVE)
check = utils.padd(villager, offset2)
if self.block_at(*check) not in blocks.NON_SOLID_IDS:
break
else: # for
result.append(utils.padd(villager, offset))
return result