198 lines
5.9 KiB
Python
198 lines
5.9 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch import FloatTensor, LongTensor
|
|
from math import sqrt
|
|
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(self, log2_count_in: int, log2_count_out: int):
|
|
super().__init__()
|
|
m, n = 2 ** log2_count_in, 2 ** log2_count_out
|
|
self.is_middle = m == n
|
|
self.norm1 = nn.GroupNorm(2 ** 5, m)
|
|
self.conv1 = nn.Conv2d(m, n, 3, padding=1)
|
|
self.norm2 = nn.GroupNorm(2 ** 5, n)
|
|
self.conv2 = nn.Conv2d(n, n, 3, padding=1)
|
|
if not self.is_middle:
|
|
self.nin_shortcut = nn.Conv2d(m, n, 1)
|
|
|
|
def forward(self, x: FloatTensor) -> FloatTensor:
|
|
h = x
|
|
h = self.norm1.forward(h)
|
|
h *= torch.sigmoid(h)
|
|
h = self.conv1.forward(h)
|
|
h = self.norm2.forward(h)
|
|
h *= torch.sigmoid(h)
|
|
h = self.conv2(h)
|
|
if not self.is_middle:
|
|
x = self.nin_shortcut.forward(x)
|
|
return x + h
|
|
|
|
|
|
class AttentionBlock(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
n = 2 ** 9
|
|
self.norm = nn.GroupNorm(2 ** 5, n)
|
|
self.q = nn.Conv2d(n, n, 1)
|
|
self.k = nn.Conv2d(n, n, 1)
|
|
self.v = nn.Conv2d(n, n, 1)
|
|
self.proj_out = nn.Conv2d(n, n, 1)
|
|
|
|
def forward(self, x: FloatTensor) -> FloatTensor:
|
|
n, m = 2 ** 9, x.shape[0]
|
|
h = x
|
|
h = self.norm(h)
|
|
k = self.k.forward(h)
|
|
v = self.v.forward(h)
|
|
q = self.q.forward(h)
|
|
k = k.reshape(m, n, -1)
|
|
v = v.reshape(m, n, -1)
|
|
q = q.reshape(m, n, -1)
|
|
q = q.permute(0, 2, 1)
|
|
w = torch.bmm(q, k)
|
|
w /= n ** 0.5
|
|
w = torch.softmax(w, dim=2)
|
|
w = w.permute(0, 2, 1)
|
|
h = torch.bmm(v, w)
|
|
token_count = int(sqrt(h.shape[-1]))
|
|
h = h.reshape(m, n, token_count, token_count)
|
|
h = self.proj_out.forward(h)
|
|
return x + h
|
|
|
|
|
|
class MiddleLayer(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.block_1 = ResnetBlock(9, 9)
|
|
self.attn_1 = AttentionBlock()
|
|
self.block_2 = ResnetBlock(9, 9)
|
|
|
|
def forward(self, h: FloatTensor) -> FloatTensor:
|
|
h = self.block_1.forward(h)
|
|
h = self.attn_1.forward(h)
|
|
h = self.block_2.forward(h)
|
|
return h
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
def __init__(self, log2_count):
|
|
super().__init__()
|
|
n = 2 ** log2_count
|
|
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
|
|
self.conv = nn.Conv2d(n, n, 3, padding=1)
|
|
|
|
def forward(self, x: FloatTensor) -> FloatTensor:
|
|
x = self.upsample.forward(x.to(torch.float32))
|
|
x = self.conv.forward(x)
|
|
return x
|
|
|
|
|
|
class UpsampleBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
log2_count_in: int,
|
|
log2_count_out: int,
|
|
has_attention: bool,
|
|
has_upsample: bool
|
|
):
|
|
super().__init__()
|
|
self.has_attention = has_attention
|
|
self.has_upsample = has_upsample
|
|
|
|
self.block = nn.ModuleList([
|
|
ResnetBlock(log2_count_in, log2_count_out),
|
|
ResnetBlock(log2_count_out, log2_count_out),
|
|
ResnetBlock(log2_count_out, log2_count_out)
|
|
])
|
|
|
|
if has_attention:
|
|
self.attn = nn.ModuleList([
|
|
AttentionBlock(),
|
|
AttentionBlock(),
|
|
AttentionBlock()
|
|
])
|
|
|
|
if has_upsample:
|
|
self.upsample = Upsample(log2_count_out)
|
|
|
|
|
|
def forward(self, h: FloatTensor) -> FloatTensor:
|
|
for j in range(3):
|
|
h = self.block[j].forward(h)
|
|
if self.has_attention:
|
|
h = self.attn[j].forward(h)
|
|
if self.has_upsample:
|
|
h = self.upsample.forward(h)
|
|
return h
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.conv_in = nn.Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
|
|
self.mid = MiddleLayer()
|
|
|
|
self.up = nn.ModuleList([
|
|
UpsampleBlock(7, 7, False, False),
|
|
UpsampleBlock(8, 7, False, True),
|
|
UpsampleBlock(8, 8, False, True),
|
|
UpsampleBlock(9, 8, False, True),
|
|
UpsampleBlock(9, 9, True, True)
|
|
])
|
|
|
|
self.norm_out = nn.GroupNorm(2 ** 5, 2 ** 7)
|
|
self.conv_out = nn.Conv2d(2 ** 7, 3, 3, padding=1)
|
|
|
|
def forward(self, z: FloatTensor) -> FloatTensor:
|
|
z = self.conv_in.forward(z)
|
|
z = self.mid.forward(z)
|
|
|
|
for i in reversed(range(5)):
|
|
z = self.up[i].forward(z)
|
|
|
|
z = self.norm_out.forward(z)
|
|
z *= torch.sigmoid(z)
|
|
z = self.conv_out.forward(z)
|
|
return z
|
|
|
|
|
|
class VQGanDetokenizer(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
vocab_count, embed_count = 2 ** 14, 2 ** 8
|
|
self.vocab_count = vocab_count
|
|
self.embedding = nn.Embedding(vocab_count, embed_count)
|
|
self.post_quant_conv = nn.Conv2d(embed_count, embed_count, 1)
|
|
self.decoder = Decoder()
|
|
|
|
def forward(self, is_seamless: bool, z: LongTensor) -> FloatTensor:
|
|
z.clamp_(0, self.vocab_count - 1)
|
|
grid_size = int(sqrt(z.shape[0]))
|
|
token_count = grid_size * 2 ** 4
|
|
|
|
if is_seamless:
|
|
z = z.view([grid_size, grid_size, 2 ** 4, 2 ** 4])
|
|
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
|
z = z.flatten().unsqueeze(1)
|
|
z = self.embedding.forward(z)
|
|
z = z.view((1, token_count, token_count, 2 ** 8))
|
|
else:
|
|
z = self.embedding.forward(z)
|
|
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
|
|
|
|
z = z.permute(0, 3, 1, 2).contiguous()
|
|
z = self.post_quant_conv.forward(z)
|
|
z = self.decoder.forward(z)
|
|
z = z.permute(0, 2, 3, 1)
|
|
z = z.clip(0.0, 1.0) * 255
|
|
|
|
if is_seamless:
|
|
z = z[0]
|
|
else:
|
|
z = z.view([grid_size, grid_size, 2 ** 8, 2 ** 8, 3])
|
|
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
|
|
|
return z
|