min-dalle-test/README.md
2022-07-01 19:15:31 -04:00

66 lines
2.1 KiB
Markdown
Vendored

# min(DALL·E)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb)
 
[![Replicate](https://replicate.com/kuprel/min-dalle/badge)](https://replicate.com/kuprel/min-dalle)
 
[![Join us on Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.gg/xBPBXfcFHd)
This is a minimal implementation of Boris Dayma's [DALL·E Mini](https://github.com/borisdayma/dalle-mini) in PyTorch. It has been stripped to the bare essentials necessary for doing inference. The only third party dependencies are numpy and torch.
It currently takes **7.4 seconds** to generate an image with DALL·E Mega on a standard GPU runtime in Colab.
The flax model and the code for coverting it to torch can be found [here](https://github.com/kuprel/min-dalle-flax).
## Install
```bash
$ pip install min-dalle
```
## Usage
### Python
To load a model once and generate multiple times, first initialize `MinDalleTorch`.
```python
from min_dalle import MinDalleTorch
model = MinDalleTorch(
is_mega=True,
is_reusable=True,
models_root='./pretrained'
)
```
The required models will be downloaded to `models_root` if they are not already there. After the model has loaded, call `generate_image` with some text and a seed as many times as you want.
```python
text = "a comfy chair that looks like an avocado"
image = model.generate_image(text)
display(image)
```
![Avocado Armchair](examples/avocado_armchair.png)
```python
text = "trail cam footage of gollum eating watermelon"
image = model.generate_image(text, seed=1)
display(image)
```
![Gollum Trailcam](examples/gollum_trailcam.png)
### Command Line
Use the python script `image_from_text.py` to generate images from the command line.
```bash
$ python image_from_text.py --text='artificial intelligence' --seed=7
```
![Artificial Intelligence](examples/artificial_intelligence.png)
```bash
$ python image_from_text.py --text='court sketch of godzilla on trial' --mega
```
![Godzilla Trial](examples/godzilla_on_trial.png)