Go to file
2022-07-02 09:04:13 -04:00
examples update examples 2022-07-01 14:28:51 -04:00
min_dalle added grid_size parameter to generate a grid of images 2022-07-02 08:45:49 -04:00
replicate v0.2.0, MinDalleTorch -> MinDalle, breaking change 2022-07-01 19:44:24 -04:00
.gitattributes add gitattributes file 2022-06-29 12:45:41 -04:00
.gitignore models_root command line argument 2022-07-01 23:39:48 -04:00
image_from_text.py added grid_size parameter to generate a grid of images 2022-07-02 08:45:49 -04:00
LICENSE license and cleanup 2022-06-27 14:34:10 -04:00
min_dalle.ipynb generate 3x3 grid in colab on standard GPU runtime 2022-07-02 09:04:13 -04:00
README.md models_root command line argument 2022-07-01 23:39:48 -04:00
requirements.txt added to pypi 2022-07-01 18:16:55 -04:00
setup.py removed typing_extensions requirement 2022-07-02 06:34:47 -04:00

min(DALL·E)

Open In Colab   Replicate   Join us on Discord

This is a minimal implementation of Boris Dayma's DALL·E Mini in PyTorch. It has been stripped to the bare essentials necessary for doing inference. The only third party dependencies are numpy and torch.

It currently takes 7.4 seconds to generate an image with DALL·E Mega on a standard GPU runtime in Colab.

The flax model and code for converting it to torch can be found here.

Install

$ pip install min-dalle

Usage

Python

Load the model parameters once and reuse the model to generate multiple images.

from min_dalle import MinDalle

model = MinDalle(is_mega=True, models_root='./pretrained')

The required models will be downloaded to models_root if they are not already there. Once everything has finished initializing, call generate_image with some text and a seed as many times as you want.

text = "a comfy chair that looks like an avocado"
image = model.generate_image(text)
display(image)

Avocado Armchair

text = "trail cam footage of gollum eating watermelon"
image = model.generate_image(text, seed=1)
display(image)

Gollum Trailcam

Command Line

Use image_from_text.py to generate images from the command line.

$ python image_from_text.py --text='artificial intelligence' --seed=7

Artificial Intelligence

$ python image_from_text.py --text='court sketch of godzilla on trial' --mega

Godzilla Trial