examples | ||
min_dalle | ||
.gitignore | ||
image_from_text.py | ||
LICENSE | ||
min_dalle.ipynb | ||
README.md | ||
requirements.txt | ||
setup.sh |
min(DALL·E)
This is a minimal implementation of DALL·E Mini. It has been stripped to the bare essentials necessary for doing inference, and converted to PyTorch. The only third party dependencies are numpy
, torch
, and flax
. PyTorch inference with DALL·E Mega takes about 10 seconds in colab.
Setup
Run sh setup.sh
to install dependencies and download pretrained models. The wandb
python package is installed to download DALL·E mini and DALL·E mega. Alternatively, the models can be downloaded manually here:
VQGan,
DALL·E Mini,
DALL·E Mega
Usage
Use the python script image_from_text.py
to generate images from the command line. Note: the command line script loads the models and parameters each time. To load a model once and generate multiple times, initialize either MinDalleTorch
or MinDalleFlax
with is_mega=True
or is_mega=False
. Then call generate_image
with some text
and a seed
. See the colab for an example.
Examples
python3 image_from_text.py --text='artificial intelligence' --torch
python image_from_text.py --text='a comfy chair that looks like an avocado' --torch --mega --seed=10
python image_from_text.py --text='court sketch of godzilla on trial' --mega --seed=100