35 lines
1.5 KiB
Markdown
35 lines
1.5 KiB
Markdown
# min(DALL·E)
|
|
|
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb)
|
|
|
|
This is a minimal implementation of [DALL·E Mini](https://github.com/borisdayma/dalle-mini). It has been stripped to the bare essentials necessary for doing inference, and converted to PyTorch. The only third party dependencies are `torch` for the torch model and `flax` for the flax model.
|
|
|
|
### Setup
|
|
|
|
Run `sh setup.sh` to install dependencies and download pretrained models. In the bash script, GitHub LFS is used to download the VQGan detokenizer and the Weight & Biases python package is used to download the DALL·E Mini and DALL·E Mega transformer models. These models can also be downloaded manually:
|
|
[VQGan](https://huggingface.co/dalle-mini/vqgan_imagenet_f16_16384),
|
|
[DALL·E Mini](https://wandb.ai/dalle-mini/dalle-mini/artifacts/DalleBart_model/mini-1/v0/files),
|
|
[DALL·E Mega](https://wandb.ai/dalle-mini/dalle-mini/artifacts/DalleBart_model/mega-1-fp16/v14/files)
|
|
|
|
### Usage
|
|
|
|
Use the command line python script `image_from_text.py` to generate images. Here are some examples:
|
|
|
|
```
|
|
python image_from_text.py --seed=7 --text='alien life'
|
|
```
|
|
![Alien](examples/alien.png)
|
|
|
|
|
|
```
|
|
python image_from_text.py --mega --seed=4 --text='a comfy chair that looks like an avocado'
|
|
```
|
|
![Avocado Armchair](examples/avocado_armchair.png)
|
|
|
|
|
|
```
|
|
python image_from_text.py --mega --seed=100 --text='court sketch of godzilla on trial'
|
|
```
|
|
|
|
![Godzilla Trial](examples/godzilla_trial.png)
|