min-dalle-test/min_dalle/min_dalle_torch.py
2022-07-01 15:53:39 -04:00

135 lines
5.2 KiB
Python

import os
from PIL import Image
from typing import Dict
import numpy
from torch import LongTensor
import torch
import json
torch.set_grad_enabled(False)
torch.set_num_threads(os.cpu_count())
from .text_tokenizer import TextTokenizer
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
from .models.vqgan_detokenizer import VQGanDetokenizer
class MinDalleTorch:
def __init__(
self,
is_mega: bool,
is_reusable: bool = True,
sample_token_count: int = 256
):
print("initializing MinDalleTorch")
self.is_reusable = is_reusable
self.sample_token_count = sample_token_count
self.batch_count = 2
self.text_token_count = 64
self.image_token_count = 256
self.layer_count = 24 if is_mega else 12
self.attention_head_count = 32 if is_mega else 16
self.embed_count = 2048 if is_mega else 1024
self.glu_embed_count = 4096 if is_mega else 2730
self.text_vocab_count = 50272 if is_mega else 50264
self.image_vocab_count = 16415 if is_mega else 16384
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
self.model_path = os.path.join('pretrained', model_name)
self.encoder_params_path = os.path.join(self.model_path, 'encoder.pt')
self.decoder_params_path = os.path.join(self.model_path, 'decoder.pt')
self.detoker_params_path = os.path.join('pretrained', 'vqgan', 'detoker.pt')
self.init_tokenizer()
if is_reusable:
self.init_encoder()
self.init_decoder()
self.init_detokenizer()
def init_tokenizer(self):
print("reading files from {}".format(self.model_path))
vocab_path = os.path.join(self.model_path, 'vocab.json')
merges_path = os.path.join(self.model_path, 'merges.txt')
with open(vocab_path, 'r', encoding='utf8') as f:
vocab = json.load(f)
with open(merges_path, 'r', encoding='utf8') as f:
merges = f.read().split("\n")[1:-1]
self.tokenizer = TextTokenizer(vocab, merges)
def init_encoder(self):
print("initializing DalleBartEncoderTorch")
self.encoder = DalleBartEncoderTorch(
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
text_token_count = self.text_token_count,
text_vocab_count = self.text_vocab_count,
layer_count = self.layer_count
)
params = torch.load(self.encoder_params_path)
self.encoder.load_state_dict(params, strict=False)
del params
if torch.cuda.is_available(): self.encoder = self.encoder.cuda()
def init_decoder(self):
print("initializing DalleBartDecoderTorch")
self.decoder = DalleBartDecoderTorch(
sample_token_count = self.sample_token_count,
image_token_count = self.image_token_count,
image_vocab_count = self.image_vocab_count,
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
layer_count = self.layer_count,
start_token = self.image_vocab_count,
batch_count = self.batch_count
)
params = torch.load(self.decoder_params_path)
self.decoder.load_state_dict(params, strict=False)
del params
if torch.cuda.is_available(): self.decoder = self.decoder.cuda()
def init_detokenizer(self):
print("initializing VQGanDetokenizer")
self.detokenizer = VQGanDetokenizer()
params = torch.load(self.detoker_params_path)
self.detokenizer.load_state_dict(params)
del params
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
def generate_image_tokens(self, text: str, seed: int) -> LongTensor:
print("tokenizing text")
tokens = self.tokenizer.tokenize(text)
print("text tokens", tokens)
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
text_tokens[0, :2] = [tokens[0], tokens[-1]]
text_tokens[1, :len(tokens)] = tokens
text_tokens = torch.tensor(text_tokens).to(torch.long)
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
if not self.is_reusable: self.init_encoder()
print("encoding text tokens")
encoder_state = self.encoder.forward(text_tokens)
if not self.is_reusable: del self.encoder
if not self.is_reusable: self.init_decoder()
print("sampling image tokens")
torch.manual_seed(seed)
image_tokens = self.decoder.forward(text_tokens, encoder_state)
if not self.is_reusable: del self.decoder
return image_tokens
def generate_image(self, text: str, seed: int) -> Image.Image:
image_tokens = self.generate_image_tokens(text, seed)
if not self.is_reusable: self.init_detokenizer()
print("detokenizing image")
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
if not self.is_reusable: del self.detokenizer
image = Image.fromarray(image.to('cpu').detach().numpy())
return image