simplified MinDalleTorch

This commit is contained in:
Brett Kuprel 2022-07-01 15:53:39 -04:00
parent 56f0563ad1
commit 18c72ed34d

View File

@ -19,45 +19,53 @@ class MinDalleTorch:
self,
is_mega: bool,
is_reusable: bool = True,
token_count: int = 256
sample_token_count: int = 256
):
print("initializing MinDalleTorch")
self.is_mega = is_mega
self.is_reusable = is_reusable
self.sample_token_count = sample_token_count
self.batch_count = 2
self.text_token_count = 64
self.image_token_count = 256
self.layer_count = 24 if is_mega else 12
self.attention_head_count = 32 if is_mega else 16
self.embed_count = 2048 if is_mega else 1024
self.glu_embed_count = 4096 if is_mega else 2730
self.text_vocab_count = 50272 if is_mega else 50264
self.image_vocab_count = 16415 if is_mega else 16384
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
self.model_path = os.path.join('pretrained', model_name)
print("reading files from {}".format(self.model_path))
vocab_path = os.path.join(self.model_path, 'vocab.json')
merges_path = os.path.join(self.model_path, 'merges.txt')
with open(vocab_path, 'r', encoding='utf8') as f:
vocab = json.load(f)
with open(merges_path, 'r', encoding='utf8') as f:
merges = f.read().split("\n")[1:-1]
self.tokenizer = TextTokenizer(vocab, merges)
self.is_reusable = is_reusable
self.token_count = token_count
self.encoder_params_path = os.path.join(self.model_path, 'encoder.pt')
self.decoder_params_path = os.path.join(self.model_path, 'decoder.pt')
self.detoker_params_path = os.path.join('pretrained', 'vqgan', 'detoker.pt')
self.init_tokenizer()
if is_reusable:
self.init_encoder()
self.init_decoder()
self.init_detokenizer()
def init_tokenizer(self):
print("reading files from {}".format(self.model_path))
vocab_path = os.path.join(self.model_path, 'vocab.json')
merges_path = os.path.join(self.model_path, 'merges.txt')
with open(vocab_path, 'r', encoding='utf8') as f:
vocab = json.load(f)
with open(merges_path, 'r', encoding='utf8') as f:
merges = f.read().split("\n")[1:-1]
self.tokenizer = TextTokenizer(vocab, merges)
def init_encoder(self):
print("initializing DalleBartEncoderTorch")
self.encoder = DalleBartEncoderTorch(
attention_head_count = 32 if self.is_mega else 16,
embed_count = 2048 if self.is_mega else 1024,
glu_embed_count = 4096 if self.is_mega else 2730,
text_token_count = 64,
text_vocab_count = 50272 if self.is_mega else 50264,
layer_count = 24 if self.is_mega else 12
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
text_token_count = self.text_token_count,
text_vocab_count = self.text_vocab_count,
layer_count = self.layer_count
)
params = torch.load(self.encoder_params_path)
self.encoder.load_state_dict(params, strict=False)
@ -68,15 +76,15 @@ class MinDalleTorch:
def init_decoder(self):
print("initializing DalleBartDecoderTorch")
self.decoder = DalleBartDecoderTorch(
sample_token_count = self.token_count,
image_token_count = 256,
image_vocab_count = 16415 if self.is_mega else 16384,
attention_head_count = 32 if self.is_mega else 16,
embed_count = 2048 if self.is_mega else 1024,
glu_embed_count = 4096 if self.is_mega else 2730,
layer_count = 24 if self.is_mega else 12,
start_token = 16415 if self.is_mega else 16384,
batch_count = 2
sample_token_count = self.sample_token_count,
image_token_count = self.image_token_count,
image_vocab_count = self.image_vocab_count,
attention_head_count = self.attention_head_count,
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
layer_count = self.layer_count,
start_token = self.image_vocab_count,
batch_count = self.batch_count
)
params = torch.load(self.decoder_params_path)
self.decoder.load_state_dict(params, strict=False)
@ -93,18 +101,14 @@ class MinDalleTorch:
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
def tokenize_text(self, text: str) -> numpy.ndarray:
def generate_image_tokens(self, text: str, seed: int) -> LongTensor:
print("tokenizing text")
tokens = self.tokenizer.tokenize(text)
print("text tokens", tokens)
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
text_tokens[0, :2] = [tokens[0], tokens[-1]]
text_tokens[1, :len(tokens)] = tokens
return text_tokens
def generate_image_tokens(self, text: str, seed: int) -> LongTensor:
text_tokens = self.tokenize_text(text)
text_tokens = torch.tensor(text_tokens).to(torch.long)
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()