decode_row

This commit is contained in:
Brett Kuprel
2022-07-04 09:58:00 -04:00
parent 884202239f
commit deefd24919
3 changed files with 52 additions and 28 deletions

View File

@@ -111,7 +111,6 @@ class DalleBartDecoder(nn.Module):
self,
image_vocab_count: int,
image_token_count: int,
sample_token_count: int,
embed_count: int,
attention_head_count: int,
glu_embed_count: int,
@@ -121,7 +120,6 @@ class DalleBartDecoder(nn.Module):
super().__init__()
self.layer_count = layer_count
self.embed_count = embed_count
self.sample_token_count = sample_token_count
self.condition_factor = 10.0
self.image_token_count = image_token_count
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
@@ -139,7 +137,7 @@ class DalleBartDecoder(nn.Module):
self.final_ln = nn.LayerNorm(embed_count)
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
self.zero_prob = torch.zeros([1])
self.token_indices = torch.arange(self.sample_token_count)
self.token_indices = torch.arange(self.image_token_count)
self.start_token = torch.tensor([start_token]).to(torch.long)
if torch.cuda.is_available():
self.zero_prob = self.zero_prob.cuda()
@@ -185,11 +183,35 @@ class DalleBartDecoder(nn.Module):
torch.exp(logits - top_logits[:, [0]])
)
return probs, attention_state
def decode_row(
self,
row_index: int,
attention_mask: BoolTensor,
encoder_state: FloatTensor,
attention_state: FloatTensor,
image_tokens_sequence: LongTensor
) -> Tuple[FloatTensor, LongTensor]:
for col_index in range(16):
i = 16 * row_index + col_index
probs, attention_state = self.decode_step(
attention_mask = attention_mask,
encoder_state = encoder_state,
attention_state = attention_state,
prev_tokens = image_tokens_sequence[:, i],
token_index = self.token_indices[[i]]
)
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
return attention_state, image_tokens_sequence
def forward(
self,
image_count: int,
row_count: int,
text_tokens: LongTensor,
encoder_state: FloatTensor
) -> LongTensor:
@@ -206,7 +228,7 @@ class DalleBartDecoder(nn.Module):
)
attention_state = torch.zeros(attention_state_shape)
image_tokens_sequence = torch.full(
(image_count, self.image_token_count),
(image_count, self.image_token_count + 1),
6965, # black token
dtype=torch.long
)
@@ -214,18 +236,15 @@ class DalleBartDecoder(nn.Module):
attention_state = attention_state.cuda()
image_tokens_sequence = image_tokens_sequence.cuda()
image_tokens = self.start_token[[0] * image_count]
for i in range(self.sample_token_count):
probs, attention_state = self.decode_step(
attention_mask = attention_mask,
encoder_state = encoder_state,
attention_state = attention_state,
prev_tokens = image_tokens,
token_index = self.token_indices[[i]]
)
image_tokens_sequence[:, 0] = self.start_token[0]
image_tokens = torch.multinomial(probs, 1)[:, 0]
image_tokens_sequence[:, i] = image_tokens
for row_index in range(row_count):
attention_state, image_tokens_sequence = self.decode_row(
row_index,
attention_mask,
encoder_state,
attention_state,
image_tokens_sequence
)
return image_tokens_sequence
return image_tokens_sequence[:, 1:]