decode_row
This commit is contained in:
parent
884202239f
commit
deefd24919
|
@ -14,7 +14,7 @@ parser.add_argument('--seed', type=int, default=-1)
|
|||
parser.add_argument('--grid-size', type=int, default=1)
|
||||
parser.add_argument('--image-path', type=str, default='generated')
|
||||
parser.add_argument('--models-root', type=str, default='pretrained')
|
||||
parser.add_argument('--token-count', type=int, default=256) # for debugging
|
||||
parser.add_argument('--row-count', type=int, default=16) # for debugging
|
||||
|
||||
|
||||
def ascii_from_image(image: Image.Image, size: int) -> str:
|
||||
|
@ -42,18 +42,23 @@ def generate_image(
|
|||
grid_size: int,
|
||||
image_path: str,
|
||||
models_root: str,
|
||||
token_count: int
|
||||
row_count: int
|
||||
):
|
||||
model = MinDalle(
|
||||
is_mega=is_mega,
|
||||
models_root=models_root,
|
||||
is_reusable=False,
|
||||
sample_token_count=token_count,
|
||||
is_verbose=True
|
||||
)
|
||||
|
||||
if token_count < 256:
|
||||
image_tokens = model.generate_image_tokens(text, seed, grid_size ** 2)
|
||||
if row_count < 16:
|
||||
token_count = 16 * row_count
|
||||
image_tokens = model.generate_image_tokens(
|
||||
text,
|
||||
seed,
|
||||
grid_size ** 2,
|
||||
row_count
|
||||
)
|
||||
image_tokens = image_tokens[:, :token_count].to('cpu').detach().numpy()
|
||||
print('image tokens', image_tokens)
|
||||
else:
|
||||
|
@ -72,5 +77,5 @@ if __name__ == '__main__':
|
|||
grid_size=args.grid_size,
|
||||
image_path=args.image_path,
|
||||
models_root=args.models_root,
|
||||
token_count=args.token_count
|
||||
row_count=args.row_count
|
||||
)
|
|
@ -20,13 +20,11 @@ class MinDalle:
|
|||
is_mega: bool,
|
||||
is_reusable: bool = True,
|
||||
models_root: str = 'pretrained',
|
||||
sample_token_count: int = 256,
|
||||
is_verbose = True
|
||||
):
|
||||
self.is_mega = is_mega
|
||||
self.is_reusable = is_reusable
|
||||
self.is_verbose = is_verbose
|
||||
self.sample_token_count = sample_token_count
|
||||
self.text_token_count = 64
|
||||
self.image_token_count = 256
|
||||
self.layer_count = 24 if is_mega else 12
|
||||
|
@ -119,7 +117,6 @@ class MinDalle:
|
|||
if not is_downloaded: self.download_decoder()
|
||||
if self.is_verbose: print("initializing DalleBartDecoder")
|
||||
self.decoder = DalleBartDecoder(
|
||||
sample_token_count = self.sample_token_count,
|
||||
image_token_count = self.image_token_count,
|
||||
image_vocab_count = self.image_vocab_count,
|
||||
attention_head_count = self.attention_head_count,
|
||||
|
@ -149,7 +146,8 @@ class MinDalle:
|
|||
self,
|
||||
text: str,
|
||||
seed: int,
|
||||
image_count: int
|
||||
image_count: int,
|
||||
row_count: int
|
||||
) -> LongTensor:
|
||||
if self.is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text)
|
||||
|
@ -172,6 +170,7 @@ class MinDalle:
|
|||
if seed > 0: torch.manual_seed(seed)
|
||||
image_tokens = self.decoder.forward(
|
||||
image_count,
|
||||
row_count,
|
||||
text_tokens,
|
||||
encoder_state
|
||||
)
|
||||
|
@ -186,7 +185,8 @@ class MinDalle:
|
|||
grid_size: int = 1
|
||||
) -> Image.Image:
|
||||
image_count = grid_size ** 2
|
||||
image_tokens = self.generate_image_tokens(text, seed, image_count)
|
||||
row_count = 16
|
||||
image_tokens = self.generate_image_tokens(text, seed, image_count, row_count)
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if self.is_verbose: print("detokenizing image")
|
||||
|
|
|
@ -111,7 +111,6 @@ class DalleBartDecoder(nn.Module):
|
|||
self,
|
||||
image_vocab_count: int,
|
||||
image_token_count: int,
|
||||
sample_token_count: int,
|
||||
embed_count: int,
|
||||
attention_head_count: int,
|
||||
glu_embed_count: int,
|
||||
|
@ -121,7 +120,6 @@ class DalleBartDecoder(nn.Module):
|
|||
super().__init__()
|
||||
self.layer_count = layer_count
|
||||
self.embed_count = embed_count
|
||||
self.sample_token_count = sample_token_count
|
||||
self.condition_factor = 10.0
|
||||
self.image_token_count = image_token_count
|
||||
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
|
||||
|
@ -139,7 +137,7 @@ class DalleBartDecoder(nn.Module):
|
|||
self.final_ln = nn.LayerNorm(embed_count)
|
||||
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
|
||||
self.zero_prob = torch.zeros([1])
|
||||
self.token_indices = torch.arange(self.sample_token_count)
|
||||
self.token_indices = torch.arange(self.image_token_count)
|
||||
self.start_token = torch.tensor([start_token]).to(torch.long)
|
||||
if torch.cuda.is_available():
|
||||
self.zero_prob = self.zero_prob.cuda()
|
||||
|
@ -185,11 +183,35 @@ class DalleBartDecoder(nn.Module):
|
|||
torch.exp(logits - top_logits[:, [0]])
|
||||
)
|
||||
return probs, attention_state
|
||||
|
||||
|
||||
def decode_row(
|
||||
self,
|
||||
row_index: int,
|
||||
attention_mask: BoolTensor,
|
||||
encoder_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
image_tokens_sequence: LongTensor
|
||||
) -> Tuple[FloatTensor, LongTensor]:
|
||||
for col_index in range(16):
|
||||
i = 16 * row_index + col_index
|
||||
probs, attention_state = self.decode_step(
|
||||
attention_mask = attention_mask,
|
||||
encoder_state = encoder_state,
|
||||
attention_state = attention_state,
|
||||
prev_tokens = image_tokens_sequence[:, i],
|
||||
token_index = self.token_indices[[i]]
|
||||
)
|
||||
|
||||
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
|
||||
|
||||
return attention_state, image_tokens_sequence
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_count: int,
|
||||
row_count: int,
|
||||
text_tokens: LongTensor,
|
||||
encoder_state: FloatTensor
|
||||
) -> LongTensor:
|
||||
|
@ -206,7 +228,7 @@ class DalleBartDecoder(nn.Module):
|
|||
)
|
||||
attention_state = torch.zeros(attention_state_shape)
|
||||
image_tokens_sequence = torch.full(
|
||||
(image_count, self.image_token_count),
|
||||
(image_count, self.image_token_count + 1),
|
||||
6965, # black token
|
||||
dtype=torch.long
|
||||
)
|
||||
|
@ -214,18 +236,15 @@ class DalleBartDecoder(nn.Module):
|
|||
attention_state = attention_state.cuda()
|
||||
image_tokens_sequence = image_tokens_sequence.cuda()
|
||||
|
||||
image_tokens = self.start_token[[0] * image_count]
|
||||
|
||||
for i in range(self.sample_token_count):
|
||||
probs, attention_state = self.decode_step(
|
||||
attention_mask = attention_mask,
|
||||
encoder_state = encoder_state,
|
||||
attention_state = attention_state,
|
||||
prev_tokens = image_tokens,
|
||||
token_index = self.token_indices[[i]]
|
||||
)
|
||||
image_tokens_sequence[:, 0] = self.start_token[0]
|
||||
|
||||
image_tokens = torch.multinomial(probs, 1)[:, 0]
|
||||
image_tokens_sequence[:, i] = image_tokens
|
||||
for row_index in range(row_count):
|
||||
attention_state, image_tokens_sequence = self.decode_row(
|
||||
row_index,
|
||||
attention_mask,
|
||||
encoder_state,
|
||||
attention_state,
|
||||
image_tokens_sequence
|
||||
)
|
||||
|
||||
return image_tokens_sequence
|
||||
return image_tokens_sequence[:, 1:]
|
Loading…
Reference in New Issue
Block a user