decode_row

This commit is contained in:
Brett Kuprel
2022-07-04 09:58:00 -04:00
parent 884202239f
commit deefd24919
3 changed files with 52 additions and 28 deletions

View File

@@ -20,13 +20,11 @@ class MinDalle:
is_mega: bool,
is_reusable: bool = True,
models_root: str = 'pretrained',
sample_token_count: int = 256,
is_verbose = True
):
self.is_mega = is_mega
self.is_reusable = is_reusable
self.is_verbose = is_verbose
self.sample_token_count = sample_token_count
self.text_token_count = 64
self.image_token_count = 256
self.layer_count = 24 if is_mega else 12
@@ -119,7 +117,6 @@ class MinDalle:
if not is_downloaded: self.download_decoder()
if self.is_verbose: print("initializing DalleBartDecoder")
self.decoder = DalleBartDecoder(
sample_token_count = self.sample_token_count,
image_token_count = self.image_token_count,
image_vocab_count = self.image_vocab_count,
attention_head_count = self.attention_head_count,
@@ -149,7 +146,8 @@ class MinDalle:
self,
text: str,
seed: int,
image_count: int
image_count: int,
row_count: int
) -> LongTensor:
if self.is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text)
@@ -172,6 +170,7 @@ class MinDalle:
if seed > 0: torch.manual_seed(seed)
image_tokens = self.decoder.forward(
image_count,
row_count,
text_tokens,
encoder_state
)
@@ -186,7 +185,8 @@ class MinDalle:
grid_size: int = 1
) -> Image.Image:
image_count = grid_size ** 2
image_tokens = self.generate_image_tokens(text, seed, image_count)
row_count = 16
image_tokens = self.generate_image_tokens(text, seed, image_count, row_count)
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if self.is_verbose: print("detokenizing image")

View File

@@ -111,7 +111,6 @@ class DalleBartDecoder(nn.Module):
self,
image_vocab_count: int,
image_token_count: int,
sample_token_count: int,
embed_count: int,
attention_head_count: int,
glu_embed_count: int,
@@ -121,7 +120,6 @@ class DalleBartDecoder(nn.Module):
super().__init__()
self.layer_count = layer_count
self.embed_count = embed_count
self.sample_token_count = sample_token_count
self.condition_factor = 10.0
self.image_token_count = image_token_count
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
@@ -139,7 +137,7 @@ class DalleBartDecoder(nn.Module):
self.final_ln = nn.LayerNorm(embed_count)
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
self.zero_prob = torch.zeros([1])
self.token_indices = torch.arange(self.sample_token_count)
self.token_indices = torch.arange(self.image_token_count)
self.start_token = torch.tensor([start_token]).to(torch.long)
if torch.cuda.is_available():
self.zero_prob = self.zero_prob.cuda()
@@ -185,11 +183,35 @@ class DalleBartDecoder(nn.Module):
torch.exp(logits - top_logits[:, [0]])
)
return probs, attention_state
def decode_row(
self,
row_index: int,
attention_mask: BoolTensor,
encoder_state: FloatTensor,
attention_state: FloatTensor,
image_tokens_sequence: LongTensor
) -> Tuple[FloatTensor, LongTensor]:
for col_index in range(16):
i = 16 * row_index + col_index
probs, attention_state = self.decode_step(
attention_mask = attention_mask,
encoder_state = encoder_state,
attention_state = attention_state,
prev_tokens = image_tokens_sequence[:, i],
token_index = self.token_indices[[i]]
)
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
return attention_state, image_tokens_sequence
def forward(
self,
image_count: int,
row_count: int,
text_tokens: LongTensor,
encoder_state: FloatTensor
) -> LongTensor:
@@ -206,7 +228,7 @@ class DalleBartDecoder(nn.Module):
)
attention_state = torch.zeros(attention_state_shape)
image_tokens_sequence = torch.full(
(image_count, self.image_token_count),
(image_count, self.image_token_count + 1),
6965, # black token
dtype=torch.long
)
@@ -214,18 +236,15 @@ class DalleBartDecoder(nn.Module):
attention_state = attention_state.cuda()
image_tokens_sequence = image_tokens_sequence.cuda()
image_tokens = self.start_token[[0] * image_count]
for i in range(self.sample_token_count):
probs, attention_state = self.decode_step(
attention_mask = attention_mask,
encoder_state = encoder_state,
attention_state = attention_state,
prev_tokens = image_tokens,
token_index = self.token_indices[[i]]
)
image_tokens_sequence[:, 0] = self.start_token[0]
image_tokens = torch.multinomial(probs, 1)[:, 0]
image_tokens_sequence[:, i] = image_tokens
for row_index in range(row_count):
attention_state, image_tokens_sequence = self.decode_row(
row_index,
attention_mask,
encoder_state,
attention_state,
image_tokens_sequence
)
return image_tokens_sequence
return image_tokens_sequence[:, 1:]