fix typing

This commit is contained in:
Brett Kuprel 2022-07-07 17:18:30 -04:00
parent 2cac9220b5
commit 736904ef2f
3 changed files with 14 additions and 14 deletions

View File

@ -2,7 +2,7 @@ import os
from PIL import Image
from matplotlib.pyplot import grid
import numpy
from torch import LongTensor
from torch import LongTensor, FloatTensor
from math import sqrt
import torch
import json
@ -148,7 +148,7 @@ class MinDalle:
self,
image_tokens: LongTensor,
is_verbose: bool = False
) -> LongTensor:
) -> FloatTensor:
if not self.is_reusable: del self.decoder
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
@ -158,7 +158,7 @@ class MinDalle:
return images
def grid_from_images(self, images: LongTensor) -> Image.Image:
def grid_from_images(self, images: FloatTensor) -> Image.Image:
grid_size = int(sqrt(images.shape[0]))
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
@ -175,7 +175,7 @@ class MinDalle:
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> Iterator[LongTensor]:
) -> Iterator[FloatTensor]:
assert(log2_mid_count in range(5))
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
@ -260,7 +260,7 @@ class MinDalle:
log2_k: int = 6,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> LongTensor:
) -> FloatTensor:
log2_mid_count = 0
images_stream = self.generate_images_stream(
text,

View File

@ -1,6 +1,6 @@
from typing import Tuple, List
import torch
from torch import LongTensor, nn, FloatTensor, BoolTensor
from torch import nn, LongTensor, FloatTensor, BoolTensor
torch.set_grad_enabled(False)
from .dalle_bart_encoder import GLU, AttentionBase

View File

@ -1,5 +1,5 @@
import torch
from torch import Tensor
from torch import FloatTensor
from torch.nn import Module, ModuleList, GroupNorm, Conv2d, Embedding
torch.set_grad_enabled(False)
@ -16,7 +16,7 @@ class ResnetBlock(Module):
if not self.is_middle:
self.nin_shortcut = Conv2d(m, n, 1)
def forward(self, x: Tensor) -> Tensor:
def forward(self, x: FloatTensor) -> FloatTensor:
h = x
h = self.norm1.forward(h)
h *= torch.sigmoid(h)
@ -39,7 +39,7 @@ class AttentionBlock(Module):
self.v = Conv2d(n, n, 1)
self.proj_out = Conv2d(n, n, 1)
def forward(self, x: Tensor) -> Tensor:
def forward(self, x: FloatTensor) -> FloatTensor:
n, m = 2 ** 9, x.shape[0]
h = x
h = self.norm(h)
@ -67,7 +67,7 @@ class MiddleLayer(Module):
self.attn_1 = AttentionBlock()
self.block_2 = ResnetBlock(9, 9)
def forward(self, h: Tensor) -> Tensor:
def forward(self, h: FloatTensor) -> FloatTensor:
h = self.block_1.forward(h)
h = self.attn_1.forward(h)
h = self.block_2.forward(h)
@ -81,7 +81,7 @@ class Upsample(Module):
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
self.conv = Conv2d(n, n, 3, padding=1)
def forward(self, x: Tensor) -> Tensor:
def forward(self, x: FloatTensor) -> FloatTensor:
x = self.upsample.forward(x.to(torch.float32))
x = self.conv.forward(x)
return x
@ -116,7 +116,7 @@ class UpsampleBlock(Module):
self.upsample = Upsample(log2_count_out)
def forward(self, h: Tensor) -> Tensor:
def forward(self, h: FloatTensor) -> FloatTensor:
for j in range(3):
h = self.block[j].forward(h)
if self.has_attention:
@ -144,7 +144,7 @@ class Decoder(Module):
self.norm_out = GroupNorm(2 ** 5, 2 ** 7)
self.conv_out = Conv2d(2 ** 7, 3, 3, padding=1)
def forward(self, z: Tensor) -> Tensor:
def forward(self, z: FloatTensor) -> FloatTensor:
z = self.conv_in.forward(z)
z = self.mid.forward(z)
@ -165,7 +165,7 @@ class VQGanDetokenizer(Module):
self.post_quant_conv = Conv2d(n, n, 1)
self.decoder = Decoder()
def forward(self, z: Tensor) -> Tensor:
def forward(self, z: FloatTensor) -> FloatTensor:
z = self.embedding.forward(z)
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
z = z.permute(0, 3, 1, 2).contiguous()