control super condition factor

This commit is contained in:
Brett Kuprel 2022-07-04 21:30:27 -04:00
parent f766a33dab
commit 6d81d514a0
5 changed files with 18 additions and 5 deletions

2
cog.yaml vendored
View File

@ -6,7 +6,7 @@ build:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "min-dalle==0.2.24"
- "min-dalle==0.2.26"
run:
- pip install torch==1.10.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html

View File

@ -1,3 +1,4 @@
from contextlib import suppress
from min_dalle import MinDalle
import tempfile
from typing import Iterator
@ -30,12 +31,18 @@ class Predictor(BasePredictor):
choices=[1, 2, 4, 8, 16],
default=8
),
supercondition_factor: int = Input(
description='Lower results in a wider variety of images but less agreement with the text',
choices=[2, 4, 8, 16, 32, 64],
default=8
),
) -> Iterator[Path]:
image_stream = self.model.generate_image_stream(
text,
seed,
grid_size=grid_size,
log2_mid_count=log2(intermediate_image_count),
log2_supercondition_factor=log2(supercondition_factor),
is_verbose=True
)

View File

@ -164,7 +164,8 @@ class MinDalle:
text: str,
seed: int,
grid_size: int,
log2_mid_count: int = 0,
log2_mid_count: int,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> Iterator[Image.Image]:
if is_verbose: print("tokenizing text")
@ -200,6 +201,7 @@ class MinDalle:
print('sampling row {} of {}'.format(row_index + 1, row_count))
attention_state, image_tokens = self.decoder.decode_row(
row_index,
log2_supercondition_factor,
encoder_state,
attention_mask,
attention_state,
@ -216,6 +218,7 @@ class MinDalle:
text: str,
seed: int = -1,
grid_size: int = 1,
log2_supercondition_factor: int = 3,
is_verbose: bool = False
) -> Image.Image:
log2_mid_count = 0
@ -224,6 +227,7 @@ class MinDalle:
seed,
grid_size,
log2_mid_count,
log2_supercondition_factor,
is_verbose
)
return next(image_stream)

View File

@ -116,7 +116,6 @@ class DalleBartDecoder(nn.Module):
super().__init__()
self.layer_count = layer_count
self.embed_count = embed_count
self.condition_factor = 10.0
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
self.layers: List[DecoderLayer] = nn.ModuleList([
@ -141,6 +140,7 @@ class DalleBartDecoder(nn.Module):
def decode_step(
self,
log2_supercondition_factor: int,
attention_mask: BoolTensor,
encoder_state: FloatTensor,
attention_state: FloatTensor,
@ -164,7 +164,7 @@ class DalleBartDecoder(nn.Module):
)
decoder_state = self.final_ln(decoder_state)
logits = self.lm_head(decoder_state)
a = self.condition_factor
a = log2_supercondition_factor
logits: FloatTensor = (
logits[:image_count, -1] * (1 - a) +
logits[image_count:, -1] * a
@ -182,6 +182,7 @@ class DalleBartDecoder(nn.Module):
def decode_row(
self,
row_index: int,
log2_supercondition_factor: int,
encoder_state: FloatTensor,
attention_mask: BoolTensor,
attention_state: FloatTensor,
@ -190,6 +191,7 @@ class DalleBartDecoder(nn.Module):
for col_index in range(16):
i = 16 * row_index + col_index
probs, attention_state = self.decode_step(
log2_supercondition_factor = log2_supercondition_factor,
attention_mask = attention_mask,
encoder_state = encoder_state,
attention_state = attention_state,

View File

@ -5,7 +5,7 @@ setuptools.setup(
name='min-dalle',
description = 'min(DALL·E)',
long_description=(Path(__file__).parent / "README.rst").read_text(),
version='0.2.24',
version='0.2.26',
author='Brett Kuprel',
author_email='brkuprel@gmail.com',
url='https://github.com/kuprel/min-dalle',