0.3.13, simplified code, specify device when initializing MinDalle
This commit is contained in:
parent
a2dca41623
commit
3c28b1059b
5
README.md
vendored
5
README.md
vendored
|
@ -36,12 +36,13 @@ from min_dalle import MinDalle
|
|||
model = MinDalle(
|
||||
models_root='./pretrained',
|
||||
dtype=torch.float32,
|
||||
device='cuda',
|
||||
is_mega=True,
|
||||
is_reusable=True
|
||||
)
|
||||
```
|
||||
|
||||
The required models will be downloaded to `models_root` if they are not already there. Set the `dtype` to `torch.float16` to save GPU memory. If you have an Ampere architecture GPU you can use `torch.bfloat16`. Once everything has finished initializing, call `generate_image` with some text as many times as you want. Use a positive `seed` for reproducible results. Higher values for `supercondition_factor` result in better agreement with the text but a narrower variety of generated images. Every image token is sampled from the `top_k` most probable tokens. The largest logit is subtracted from the logits to avoid infs. The logits are then divided by the `temperature`.
|
||||
The required models will be downloaded to `models_root` if they are not already there. Set the `dtype` to `torch.float16` to save GPU memory. If you have an Ampere architecture GPU you can use `torch.bfloat16`. Set the `device` to either "cuda" or "cpu". Once everything has finished initializing, call `generate_image` with some text as many times as you want. Use a positive `seed` for reproducible results. Higher values for `supercondition_factor` result in better agreement with the text but a narrower variety of generated images. Every image token is sampled from the `top_k` most probable tokens. The largest logit is subtracted from the logits to avoid infs. The logits are then divided by the `temperature`.
|
||||
|
||||
```python
|
||||
image = model.generate_image(
|
||||
|
@ -88,7 +89,7 @@ image.save('image_{}.png'.format(i))
|
|||
|
||||
### Progressive Outputs
|
||||
|
||||
If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as the model is decoding. The detokenizer adds a slight delay for each image. Setting `log2_mid_count` to 3 results in a total of `2 ** 3 = 8` generated images. The only valid values for `log2_mid_count` are 0, 1, 2, 3, and 4. This is implemented in the colab.
|
||||
If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as the model is decoding. The detokenizer adds a slight delay for each image. Set `progressive_outputs` to `True` to enable this. An example is implemented in the colab.
|
||||
|
||||
```python
|
||||
image_stream = model.generate_image_stream(
|
||||
|
|
2
cog.yaml
vendored
2
cog.yaml
vendored
|
@ -6,7 +6,7 @@ build:
|
|||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
python_packages:
|
||||
- "min-dalle==0.3.12"
|
||||
- "min-dalle==0.3.13"
|
||||
run:
|
||||
- pip install torch==1.12.0+cu116 -f https://download.pytorch.org/whl/torch_stable.html
|
||||
|
||||
|
|
17
min_dalle.ipynb
vendored
17
min_dalle.ipynb
vendored
|
@ -135,6 +135,7 @@
|
|||
"\n",
|
||||
"model = MinDalle(\n",
|
||||
" dtype=getattr(torch, dtype),\n",
|
||||
" device='cuda',\n",
|
||||
" is_mega=True, \n",
|
||||
" is_reusable=True\n",
|
||||
")"
|
||||
|
@ -196,14 +197,13 @@
|
|||
"grid_size = 5 #@param {type:\"integer\"}\n",
|
||||
"temperature = 2 #@param {type:\"slider\", min:0.01, max:3, step:0.01}\n",
|
||||
"supercondition_factor = 16 #@param {type:\"number\"}\n",
|
||||
"top_k = 256 #@param {type:\"integer\"}\n",
|
||||
"log2_mid_count = 3 if progressive_outputs else 0\n",
|
||||
"top_k = 128 #@param {type:\"integer\"}\n",
|
||||
"\n",
|
||||
"image_stream = model.generate_image_stream(\n",
|
||||
" text=text,\n",
|
||||
" seed=-1,\n",
|
||||
" grid_size=grid_size,\n",
|
||||
" log2_mid_count=log2_mid_count,\n",
|
||||
" progressive_outputs=progressive_outputs,\n",
|
||||
" temperature=temperature,\n",
|
||||
" top_k=int(top_k),\n",
|
||||
" supercondition_factor=float(supercondition_factor)\n",
|
||||
|
@ -229,11 +229,18 @@
|
|||
},
|
||||
"gpuClass": "standard",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3.9.13 64-bit",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
"name": "python",
|
||||
"version": "3.9.13"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -20,6 +20,7 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|||
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
|
||||
|
||||
MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
|
||||
IMAGE_TOKEN_COUNT = 256
|
||||
|
||||
|
||||
class MinDalle:
|
||||
|
@ -27,10 +28,15 @@ class MinDalle:
|
|||
self,
|
||||
models_root: str = 'pretrained',
|
||||
dtype: torch.dtype = torch.float32,
|
||||
device: str = None,
|
||||
is_mega: bool = True,
|
||||
is_reusable: bool = True,
|
||||
is_verbose = True
|
||||
):
|
||||
if device == None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
if is_verbose: print("using device", device)
|
||||
self.device = device
|
||||
self.is_mega = is_mega
|
||||
self.is_reusable = is_reusable
|
||||
self.dtype = dtype
|
||||
|
@ -112,12 +118,13 @@ class MinDalle:
|
|||
glu_embed_count = self.glu_embed_count,
|
||||
text_token_count = self.text_token_count,
|
||||
text_vocab_count = self.text_vocab_count,
|
||||
layer_count = self.layer_count
|
||||
layer_count = self.layer_count,
|
||||
device=self.device
|
||||
).to(self.dtype).eval()
|
||||
params = torch.load(self.encoder_params_path)
|
||||
self.encoder.load_state_dict(params, strict=False)
|
||||
del params
|
||||
if torch.cuda.is_available(): self.encoder = self.encoder.cuda()
|
||||
self.encoder = self.encoder.to(device=self.device)
|
||||
|
||||
|
||||
def init_decoder(self):
|
||||
|
@ -130,12 +137,12 @@ class MinDalle:
|
|||
embed_count = self.embed_count,
|
||||
glu_embed_count = self.glu_embed_count,
|
||||
layer_count = self.layer_count,
|
||||
start_token = self.image_vocab_count
|
||||
device=self.device
|
||||
).to(self.dtype).eval()
|
||||
params = torch.load(self.decoder_params_path)
|
||||
self.decoder.load_state_dict(params, strict=False)
|
||||
del params
|
||||
if torch.cuda.is_available(): self.decoder = self.decoder.cuda()
|
||||
self.decoder = self.decoder.to(device=self.device)
|
||||
|
||||
|
||||
def init_detokenizer(self):
|
||||
|
@ -146,7 +153,7 @@ class MinDalle:
|
|||
params = torch.load(self.detoker_params_path)
|
||||
self.detokenizer.load_state_dict(params)
|
||||
del params
|
||||
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
||||
self.detokenizer = self.detokenizer.to(device=self.device)
|
||||
|
||||
|
||||
def images_from_tokens(
|
||||
|
@ -155,7 +162,7 @@ class MinDalle:
|
|||
is_verbose: bool = False
|
||||
) -> FloatTensor:
|
||||
if not self.is_reusable: del self.decoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if is_verbose: print("detokenizing image")
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
|
@ -176,13 +183,12 @@ class MinDalle:
|
|||
text: str,
|
||||
seed: int,
|
||||
image_count: int,
|
||||
log2_mid_count: int,
|
||||
progressive_outputs: bool = False,
|
||||
temperature: float = 1,
|
||||
top_k: int = 256,
|
||||
supercondition_factor: int = 16,
|
||||
is_verbose: bool = False
|
||||
) -> Iterator[FloatTensor]:
|
||||
assert(log2_mid_count in range(5))
|
||||
if is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
|
||||
if len(tokens) > self.text_token_count:
|
||||
|
@ -191,49 +197,67 @@ class MinDalle:
|
|||
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
|
||||
text_tokens[0, :2] = [tokens[0], tokens[-1]]
|
||||
text_tokens[1, :len(tokens)] = tokens
|
||||
|
||||
text_tokens = torch.tensor(text_tokens).to(torch.long)
|
||||
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
||||
text_tokens = torch.tensor(
|
||||
text_tokens,
|
||||
dtype=torch.long,
|
||||
device=self.device
|
||||
)
|
||||
|
||||
if not self.is_reusable: self.init_encoder()
|
||||
if is_verbose: print("encoding text tokens")
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
encoder_state = self.encoder.forward(text_tokens)
|
||||
if not self.is_reusable: del self.encoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if not self.is_reusable: self.init_decoder()
|
||||
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
encoder_state, attention_mask, attention_state, image_tokens = (
|
||||
self.decoder.decode_initial(
|
||||
seed=seed,
|
||||
image_count=image_count,
|
||||
text_tokens=text_tokens,
|
||||
encoder_state=encoder_state
|
||||
expanded_indices = [0] * image_count + [1] * image_count
|
||||
text_tokens = text_tokens[expanded_indices]
|
||||
encoder_state = encoder_state[expanded_indices]
|
||||
attention_mask = text_tokens.not_equal(1)
|
||||
attention_state = torch.zeros(
|
||||
size=(
|
||||
self.layer_count,
|
||||
image_count * 4,
|
||||
IMAGE_TOKEN_COUNT,
|
||||
self.embed_count
|
||||
),
|
||||
device=self.device
|
||||
)
|
||||
image_tokens = torch.full(
|
||||
(IMAGE_TOKEN_COUNT + 1, image_count),
|
||||
self.image_vocab_count,
|
||||
dtype=torch.long,
|
||||
device=self.device
|
||||
)
|
||||
|
||||
row_count = 16
|
||||
for row_index in range(row_count):
|
||||
if is_verbose:
|
||||
print('sampling row {} of {}'.format(row_index + 1, row_count))
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
attention_state, image_tokens = self.decoder.decode_row(
|
||||
row_index,
|
||||
temperature=temperature,
|
||||
top_k=top_k,
|
||||
supercondition_factor=supercondition_factor,
|
||||
encoder_state=encoder_state,
|
||||
attention_mask=attention_mask,
|
||||
attention_state=attention_state,
|
||||
image_tokens_sequence=image_tokens
|
||||
if seed > 0: torch.manual_seed(seed)
|
||||
|
||||
token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=self.device)
|
||||
settings = torch.tensor(
|
||||
[temperature, top_k, supercondition_factor],
|
||||
dtype=torch.float32,
|
||||
device=self.device
|
||||
)
|
||||
for i in range(IMAGE_TOKEN_COUNT):
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
image_tokens[i + 1], attention_state = self.decoder.forward(
|
||||
settings=settings,
|
||||
attention_mask=attention_mask,
|
||||
encoder_state=encoder_state,
|
||||
attention_state=attention_state,
|
||||
prev_tokens=image_tokens[i],
|
||||
token_index=token_indices[[i]]
|
||||
)
|
||||
|
||||
with torch.cuda.amp.autocast(dtype=torch.float32):
|
||||
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
|
||||
tokens = image_tokens[:, 1:]
|
||||
images = self.images_from_tokens(tokens, is_verbose)
|
||||
yield images
|
||||
if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256:
|
||||
yield self.images_from_tokens(
|
||||
image_tokens=image_tokens[1:].T,
|
||||
is_verbose=is_verbose
|
||||
)
|
||||
|
||||
|
||||
def generate_image_stream(
|
||||
|
@ -241,7 +265,7 @@ class MinDalle:
|
|||
text: str,
|
||||
seed: int,
|
||||
grid_size: int,
|
||||
log2_mid_count: int,
|
||||
progressive_outputs: bool = False,
|
||||
temperature: float = 1,
|
||||
top_k: int = 256,
|
||||
supercondition_factor: int = 16,
|
||||
|
@ -251,7 +275,7 @@ class MinDalle:
|
|||
text=text,
|
||||
seed=seed,
|
||||
image_count=grid_size ** 2,
|
||||
log2_mid_count=log2_mid_count,
|
||||
progressive_outputs=progressive_outputs,
|
||||
temperature=temperature,
|
||||
top_k=top_k,
|
||||
supercondition_factor=supercondition_factor,
|
||||
|
@ -271,13 +295,12 @@ class MinDalle:
|
|||
supercondition_factor: int = 16,
|
||||
is_verbose: bool = False
|
||||
) -> FloatTensor:
|
||||
log2_mid_count = 0
|
||||
images_stream = self.generate_images_stream(
|
||||
text=text,
|
||||
seed=seed,
|
||||
image_count=image_count,
|
||||
temperature=temperature,
|
||||
log2_mid_count=log2_mid_count,
|
||||
progressive_outputs=False,
|
||||
top_k=top_k,
|
||||
supercondition_factor=supercondition_factor,
|
||||
is_verbose=is_verbose
|
||||
|
@ -295,12 +318,11 @@ class MinDalle:
|
|||
supercondition_factor: int = 16,
|
||||
is_verbose: bool = False
|
||||
) -> Image.Image:
|
||||
log2_mid_count = 0
|
||||
image_stream = self.generate_image_stream(
|
||||
text=text,
|
||||
seed=seed,
|
||||
grid_size=grid_size,
|
||||
log2_mid_count=log2_mid_count,
|
||||
progressive_outputs=False,
|
||||
temperature=temperature,
|
||||
top_k=top_k,
|
||||
supercondition_factor=supercondition_factor,
|
||||
|
|
|
@ -4,7 +4,6 @@ from torch import nn, LongTensor, FloatTensor, BoolTensor
|
|||
from .dalle_bart_encoder import GLU, AttentionBase
|
||||
|
||||
IMAGE_TOKEN_COUNT = 256
|
||||
BLANK_TOKEN = 6965
|
||||
|
||||
|
||||
class DecoderCrossAttention(AttentionBase):
|
||||
|
@ -23,21 +22,18 @@ class DecoderCrossAttention(AttentionBase):
|
|||
class DecoderSelfAttention(AttentionBase):
|
||||
def __init__(self, head_count: int, embed_count: int):
|
||||
super().__init__(head_count, embed_count)
|
||||
token_indices = torch.arange(IMAGE_TOKEN_COUNT)
|
||||
if torch.cuda.is_available(): token_indices = token_indices.cuda()
|
||||
self.token_indices = token_indices
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
decoder_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
attn_mask: BoolTensor,
|
||||
token_index: LongTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
keys = self.k_proj.forward(decoder_state)
|
||||
values = self.v_proj.forward(decoder_state)
|
||||
queries = self.q_proj.forward(decoder_state)
|
||||
attn_mask = self.token_indices < token_index + 1
|
||||
attn_mask = attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
attn_state_new = torch.cat([keys, values]).to(attention_state.dtype)
|
||||
attention_state[:, token_index] = attn_state_new
|
||||
batch_count = decoder_state.shape[0]
|
||||
|
@ -52,7 +48,8 @@ class DecoderLayer(nn.Module):
|
|||
self,
|
||||
head_count: int,
|
||||
embed_count: int,
|
||||
glu_embed_count: int
|
||||
glu_embed_count: int,
|
||||
device: str
|
||||
):
|
||||
super().__init__()
|
||||
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||
|
@ -62,6 +59,7 @@ class DecoderLayer(nn.Module):
|
|||
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
|
||||
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||
self.glu = GLU(embed_count, glu_embed_count)
|
||||
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
|
||||
|
||||
|
||||
def forward(
|
||||
|
@ -73,12 +71,15 @@ class DecoderLayer(nn.Module):
|
|||
token_index: LongTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
# Self Attention
|
||||
self_attn_mask = self.token_indices < token_index + 1
|
||||
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
residual = decoder_state
|
||||
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
||||
decoder_state, attention_state = self.self_attn.forward(
|
||||
decoder_state,
|
||||
attention_state,
|
||||
token_index
|
||||
decoder_state=decoder_state,
|
||||
attention_state=attention_state,
|
||||
attn_mask=self_attn_mask,
|
||||
token_index=token_index
|
||||
)
|
||||
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
|
||||
decoder_state = residual + decoder_state
|
||||
|
@ -87,9 +88,9 @@ class DecoderLayer(nn.Module):
|
|||
residual = decoder_state
|
||||
decoder_state = self.pre_encoder_attn_layer_norm.forward(decoder_state)
|
||||
decoder_state = self.encoder_attn.forward(
|
||||
decoder_state,
|
||||
encoder_state,
|
||||
attention_mask
|
||||
decoder_state=decoder_state,
|
||||
encoder_state=encoder_state,
|
||||
attention_mask=attention_mask
|
||||
)
|
||||
decoder_state = self.encoder_attn_layer_norm.forward(decoder_state)
|
||||
decoder_state = residual + decoder_state
|
||||
|
@ -110,7 +111,7 @@ class DalleBartDecoder(nn.Module):
|
|||
attention_head_count: int,
|
||||
glu_embed_count: int,
|
||||
layer_count: int,
|
||||
start_token: int
|
||||
device: str
|
||||
):
|
||||
super().__init__()
|
||||
self.layer_count = layer_count
|
||||
|
@ -120,70 +121,28 @@ class DalleBartDecoder(nn.Module):
|
|||
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
|
||||
self.layers: List[DecoderLayer] = nn.ModuleList([
|
||||
DecoderLayer(
|
||||
attention_head_count,
|
||||
embed_count,
|
||||
glu_embed_count
|
||||
head_count=attention_head_count,
|
||||
embed_count=embed_count,
|
||||
glu_embed_count=glu_embed_count,
|
||||
device=device
|
||||
)
|
||||
for _ in range(layer_count)
|
||||
])
|
||||
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
||||
self.final_ln = nn.LayerNorm(embed_count)
|
||||
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
|
||||
self.zero_prob = torch.zeros([1])
|
||||
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT)
|
||||
self.start_token = torch.tensor([start_token]).to(torch.long)
|
||||
if torch.cuda.is_available():
|
||||
self.zero_prob = self.zero_prob.cuda()
|
||||
self.token_indices = self.token_indices.cuda()
|
||||
self.start_token = self.start_token.cuda()
|
||||
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
|
||||
|
||||
|
||||
def decode_initial(
|
||||
def forward(
|
||||
self,
|
||||
seed: int,
|
||||
image_count: int,
|
||||
text_tokens: LongTensor,
|
||||
encoder_state: FloatTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor, FloatTensor, LongTensor]:
|
||||
expanded_indices = [0] * image_count + [1] * image_count
|
||||
text_tokens = text_tokens[expanded_indices]
|
||||
encoder_state = encoder_state[expanded_indices]
|
||||
attention_mask = text_tokens.not_equal(1)
|
||||
|
||||
attention_state_shape = (
|
||||
self.layer_count,
|
||||
image_count * 4,
|
||||
IMAGE_TOKEN_COUNT,
|
||||
self.embed_count
|
||||
)
|
||||
attention_state = torch.zeros(attention_state_shape)
|
||||
image_tokens_sequence = torch.full(
|
||||
(image_count, IMAGE_TOKEN_COUNT + 1),
|
||||
BLANK_TOKEN,
|
||||
dtype=torch.long
|
||||
)
|
||||
if torch.cuda.is_available():
|
||||
attention_state = attention_state.cuda()
|
||||
image_tokens_sequence = image_tokens_sequence.cuda()
|
||||
|
||||
image_tokens_sequence[:, 0] = self.start_token[0]
|
||||
|
||||
if seed > 0: torch.manual_seed(seed)
|
||||
|
||||
return encoder_state, attention_mask, attention_state, image_tokens_sequence
|
||||
|
||||
|
||||
def decode_step(
|
||||
self,
|
||||
temperature: float,
|
||||
top_k: int,
|
||||
supercondition_factor: float,
|
||||
settings: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
encoder_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
prev_tokens: LongTensor,
|
||||
token_index: LongTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
) -> Tuple[LongTensor, FloatTensor]:
|
||||
image_count = encoder_state.shape[0] // 2
|
||||
token_index_batched = token_index[[0] * image_count * 2]
|
||||
prev_tokens = prev_tokens[list(range(image_count)) * 2]
|
||||
|
@ -202,44 +161,19 @@ class DalleBartDecoder(nn.Module):
|
|||
)
|
||||
decoder_state = self.final_ln(decoder_state)
|
||||
logits = self.lm_head(decoder_state)
|
||||
a = supercondition_factor
|
||||
temperature = settings[0]
|
||||
top_k = settings[1].to(torch.long)
|
||||
supercondition_factor = settings[2]
|
||||
logits = logits[:, -1, : 2 ** 14]
|
||||
logits: FloatTensor = (
|
||||
logits[:image_count, -1] * (1 - a) +
|
||||
logits[image_count:, -1] * a
|
||||
logits[:image_count] * (1 - supercondition_factor) +
|
||||
logits[image_count:] * supercondition_factor
|
||||
)
|
||||
|
||||
top_logits, _ = logits.topk(top_k, dim=-1)
|
||||
is_kept = logits >= top_logits[:, [-1]]
|
||||
logits -= top_logits[:, [0]]
|
||||
logits /= max(temperature, 1e-6)
|
||||
probs = torch.where(is_kept, torch.exp(logits), self.zero_prob)
|
||||
probs[:, 2 ** 14:] = 0 # vqgan vocab_count is only 2 ** 14
|
||||
return probs, attention_state
|
||||
|
||||
|
||||
def decode_row(
|
||||
self,
|
||||
row_index: int,
|
||||
temperature: float,
|
||||
top_k: int,
|
||||
supercondition_factor: float,
|
||||
encoder_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
attention_state: FloatTensor,
|
||||
image_tokens_sequence: LongTensor
|
||||
) -> Tuple[FloatTensor, LongTensor]:
|
||||
for col_index in range(16):
|
||||
i = 16 * row_index + col_index
|
||||
probs, attention_state = self.decode_step(
|
||||
temperature = temperature,
|
||||
top_k = top_k,
|
||||
supercondition_factor = supercondition_factor,
|
||||
attention_mask = attention_mask,
|
||||
encoder_state = encoder_state,
|
||||
attention_state = attention_state,
|
||||
prev_tokens = image_tokens_sequence[:, i],
|
||||
token_index = self.token_indices[[i]]
|
||||
)
|
||||
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
|
||||
|
||||
return attention_state, image_tokens_sequence
|
||||
logits_sorted, _ = logits.sort(descending=True)
|
||||
is_kept = logits >= logits_sorted[:, top_k: top_k + 1]
|
||||
logits -= logits_sorted[:, [0]]
|
||||
logits /= temperature
|
||||
logits.exp_()
|
||||
logits *= is_kept.to(torch.float32)
|
||||
image_tokens = torch.multinomial(logits, 1)[:, 0]
|
||||
return image_tokens, attention_state
|
|
@ -4,7 +4,7 @@ from torch import nn, BoolTensor, FloatTensor, LongTensor
|
|||
|
||||
|
||||
class GLU(nn.Module):
|
||||
def __init__(self, count_in_out, count_middle):
|
||||
def __init__(self, count_in_out: int, count_middle: int):
|
||||
super().__init__()
|
||||
self.gelu = nn.GELU()
|
||||
self.ln0 = nn.LayerNorm(count_in_out)
|
||||
|
@ -33,8 +33,6 @@ class AttentionBase(nn.Module):
|
|||
self.v_proj = nn.Linear(embed_count, embed_count, bias=False)
|
||||
self.q_proj = nn.Linear(embed_count, embed_count, bias=False)
|
||||
self.out_proj = nn.Linear(embed_count, embed_count, bias=False)
|
||||
self.one = torch.ones((1, 1))
|
||||
if torch.cuda.is_available(): self.one = self.one.cuda()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -48,11 +46,7 @@ class AttentionBase(nn.Module):
|
|||
queries = queries.reshape(queries.shape[:2] + (self.head_count, -1))
|
||||
queries /= queries.shape[-1] ** 0.5
|
||||
|
||||
attention_bias = torch.where(
|
||||
attention_mask,
|
||||
self.one * 0,
|
||||
self.one * (-torch.inf),
|
||||
)
|
||||
attention_bias = (1 - attention_mask.to(torch.float32)) * -1e12
|
||||
attention_weights: FloatTensor = torch.einsum(
|
||||
'bqhc,bkhc->bhqk',
|
||||
queries,
|
||||
|
@ -115,7 +109,8 @@ class DalleBartEncoder(nn.Module):
|
|||
attention_head_count: int,
|
||||
text_vocab_count: int,
|
||||
text_token_count: int,
|
||||
glu_embed_count: int
|
||||
glu_embed_count: int,
|
||||
device: str
|
||||
):
|
||||
super().__init__()
|
||||
self.text_vocab_count = text_vocab_count
|
||||
|
@ -131,17 +126,14 @@ class DalleBartEncoder(nn.Module):
|
|||
])
|
||||
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
||||
self.final_ln = nn.LayerNorm(embed_count)
|
||||
self.token_indices = torch.arange(text_token_count).to(torch.long)
|
||||
if torch.cuda.is_available():
|
||||
self.token_indices = self.token_indices.cuda()
|
||||
token_indices = torch.arange(text_token_count, device=device)
|
||||
self.pose_tokens = torch.stack([token_indices] * 2)
|
||||
|
||||
def forward(self, text_tokens: LongTensor) -> FloatTensor:
|
||||
attention_mask = text_tokens.not_equal(1)
|
||||
pose_tokens = self.token_indices[None][[0] * text_tokens.shape[0]]
|
||||
text_tokens.clamp_(0, self.text_vocab_count - 1)
|
||||
encoder_state = (
|
||||
self.embed_tokens.forward(text_tokens) +
|
||||
self.embed_positions.forward(pose_tokens)
|
||||
self.embed_positions.forward(self.pose_tokens)
|
||||
)
|
||||
encoder_state = self.layernorm_embedding.forward(encoder_state)
|
||||
for layer in self.layers:
|
||||
|
|
|
@ -39,12 +39,11 @@ class ReplicatePredictor(BasePredictor):
|
|||
description='Advanced Setting, see Readme below if interested.'
|
||||
)
|
||||
) -> Iterator[Path]:
|
||||
log2_mid_count = 3 if progressive_outputs else 0
|
||||
image_stream = self.model.generate_image_stream(
|
||||
text = text,
|
||||
seed = -1,
|
||||
grid_size = grid_size,
|
||||
log2_mid_count = log2_mid_count,
|
||||
progressive_outputs = progressive_outputs,
|
||||
temperature = eval(temperature),
|
||||
supercondition_factor = float(supercondition_factor),
|
||||
top_k = top_k,
|
||||
|
@ -55,7 +54,8 @@ class ReplicatePredictor(BasePredictor):
|
|||
path = Path(tempfile.mkdtemp())
|
||||
for image in image_stream:
|
||||
i += 1
|
||||
ext = 'png' if i == 2 ** log2_mid_count and save_as_png else 'jpg'
|
||||
is_final = i == 8 if progressive_outputs else True
|
||||
ext = 'png' if is_final and save_as_png else 'jpg'
|
||||
image_path = path / 'min-dalle-iter-{}.{}'.format(i, ext)
|
||||
image.save(str(image_path))
|
||||
yield image_path
|
2
setup.py
2
setup.py
|
@ -5,7 +5,7 @@ setuptools.setup(
|
|||
name='min-dalle',
|
||||
description = 'min(DALL·E)',
|
||||
# long_description=(Path(__file__).parent / "README.rst").read_text(),
|
||||
version='0.3.12',
|
||||
version='0.3.13',
|
||||
author='Brett Kuprel',
|
||||
author_email='brkuprel@gmail.com',
|
||||
url='https://github.com/kuprel/min-dalle',
|
||||
|
|
|
@ -14,7 +14,7 @@ def regen_root():
|
|||
root = tkinter.Tk()
|
||||
root.wm_resizable(False, False)
|
||||
|
||||
blank_image = PIL.ImageTk.PhotoImage(PIL.Image.new(size=(256 * 3, 256 * 3), mode="RGB"))
|
||||
blank_image = PIL.ImageTk.PhotoImage(PIL.Image.new(size=(256 * 2, 256 * 2), mode="RGB"))
|
||||
padding_image = PIL.ImageTk.PhotoImage(PIL.Image.new(size=(16, 16), mode="RGBA"))
|
||||
|
||||
regen_root()
|
||||
|
@ -33,30 +33,24 @@ frm = ttk.Frame(root, padding=16)
|
|||
frm.grid()
|
||||
ttk.Button(frm, text="Mega", command=set_mega_true_and_destroy).grid(column=0, row=0)
|
||||
ttk.Label(frm, image=padding_image).grid(column=1, row=0)
|
||||
ttk.Button(frm, text="Not-Mega", command=set_mega_false_and_destroy).grid(column=2, row=0)
|
||||
ttk.Button(frm, text="Mini", command=set_mega_false_and_destroy).grid(column=2, row=0)
|
||||
root.mainloop()
|
||||
|
||||
if is_mega is None:
|
||||
print("no option selected")
|
||||
sys.exit(0)
|
||||
|
||||
print("confirmed mega: ", str(is_mega))
|
||||
|
||||
# -- --
|
||||
print("is_mega", is_mega)
|
||||
|
||||
model = MinDalle(
|
||||
is_mega=is_mega,
|
||||
models_root="./pretrained",
|
||||
is_mega=is_mega,
|
||||
is_reusable=True,
|
||||
is_verbose=True
|
||||
)
|
||||
|
||||
# -- --
|
||||
|
||||
regen_root()
|
||||
|
||||
# -- --
|
||||
|
||||
label_image_content = blank_image
|
||||
|
||||
sv_prompt = tkinter.StringVar(value="artificial intelligence")
|
||||
|
@ -83,17 +77,20 @@ def generate():
|
|||
return
|
||||
# and continue
|
||||
global label_image_content
|
||||
image = model.generate_image(
|
||||
image_stream = model.generate_image_stream(
|
||||
sv_prompt.get(),
|
||||
grid_size=3,
|
||||
grid_size=2,
|
||||
seed=-1,
|
||||
progressive_outputs=False,
|
||||
temperature=temperature,
|
||||
top_k=topk,
|
||||
supercondition_factor=supercond,
|
||||
is_verbose=True
|
||||
)
|
||||
image.save("out.png")
|
||||
for image in image_stream:
|
||||
label_image_content = PIL.ImageTk.PhotoImage(image)
|
||||
label_image.configure(image=label_image_content)
|
||||
label_image.update()
|
||||
|
||||
frm = ttk.Frame(root, padding=16)
|
||||
frm.grid()
|
||||
|
@ -131,6 +128,4 @@ ttk.Label(props, image=padding_image).grid(column=0, row=7)
|
|||
ttk.Button(props, text="Generate", command=generate).grid(column=0, row=8)
|
||||
ttk.Button(props, text="Quit", command=root.destroy).grid(column=1, row=8)
|
||||
|
||||
# alrighty
|
||||
root.mainloop()
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user