179 lines
6.6 KiB
Python
179 lines
6.6 KiB
Python
from typing import Tuple, List
|
|
import torch
|
|
from torch import nn, LongTensor, FloatTensor, BoolTensor
|
|
from .dalle_bart_encoder import GLU, AttentionBase
|
|
|
|
IMAGE_TOKEN_COUNT = 256
|
|
|
|
|
|
class DecoderCrossAttention(AttentionBase):
|
|
def forward(
|
|
self,
|
|
decoder_state: FloatTensor,
|
|
encoder_state: FloatTensor,
|
|
attention_mask: BoolTensor
|
|
) -> FloatTensor:
|
|
keys = self.k_proj.forward(encoder_state)
|
|
values = self.v_proj.forward(encoder_state)
|
|
queries = self.q_proj.forward(decoder_state)
|
|
return super().forward(keys, values, queries, attention_mask)
|
|
|
|
|
|
class DecoderSelfAttention(AttentionBase):
|
|
def __init__(self, head_count: int, embed_count: int):
|
|
super().__init__(head_count, embed_count)
|
|
|
|
|
|
def forward(
|
|
self,
|
|
decoder_state: FloatTensor,
|
|
attention_state: FloatTensor,
|
|
attn_mask: BoolTensor,
|
|
token_index: LongTensor
|
|
) -> Tuple[FloatTensor, FloatTensor]:
|
|
keys = self.k_proj.forward(decoder_state)
|
|
values = self.v_proj.forward(decoder_state)
|
|
queries = self.q_proj.forward(decoder_state)
|
|
attn_state_new = torch.cat([keys, values]).to(attention_state.dtype)
|
|
attention_state[:, token_index] = attn_state_new
|
|
batch_count = decoder_state.shape[0]
|
|
keys = attention_state[:batch_count]
|
|
values = attention_state[batch_count:]
|
|
decoder_state = super().forward(keys, values, queries, attn_mask)
|
|
return decoder_state, attention_state
|
|
|
|
|
|
class DecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
head_count: int,
|
|
embed_count: int,
|
|
glu_embed_count: int,
|
|
device: str
|
|
):
|
|
super().__init__()
|
|
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.self_attn = DecoderSelfAttention(head_count, embed_count)
|
|
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
|
|
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.glu = GLU(embed_count, glu_embed_count)
|
|
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
|
|
|
|
|
|
def forward(
|
|
self,
|
|
decoder_state: FloatTensor,
|
|
encoder_state: FloatTensor,
|
|
attention_state: FloatTensor,
|
|
attention_mask: BoolTensor,
|
|
token_index: LongTensor
|
|
) -> Tuple[FloatTensor, FloatTensor]:
|
|
# Self Attention
|
|
self_attn_mask = self.token_indices < token_index + 1
|
|
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
|
|
residual = decoder_state
|
|
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
|
decoder_state, attention_state = self.self_attn.forward(
|
|
decoder_state=decoder_state,
|
|
attention_state=attention_state,
|
|
attn_mask=self_attn_mask,
|
|
token_index=token_index
|
|
)
|
|
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
|
|
decoder_state = residual + decoder_state
|
|
|
|
# Cross Attention
|
|
residual = decoder_state
|
|
decoder_state = self.pre_encoder_attn_layer_norm.forward(decoder_state)
|
|
decoder_state = self.encoder_attn.forward(
|
|
decoder_state=decoder_state,
|
|
encoder_state=encoder_state,
|
|
attention_mask=attention_mask
|
|
)
|
|
decoder_state = self.encoder_attn_layer_norm.forward(decoder_state)
|
|
decoder_state = residual + decoder_state
|
|
|
|
# Feed forward
|
|
residual = decoder_state
|
|
decoder_state = self.glu.forward(decoder_state)
|
|
decoder_state = residual + decoder_state
|
|
|
|
return decoder_state, attention_state
|
|
|
|
|
|
class DalleBartDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
image_vocab_count: int,
|
|
embed_count: int,
|
|
attention_head_count: int,
|
|
glu_embed_count: int,
|
|
layer_count: int,
|
|
device: str
|
|
):
|
|
super().__init__()
|
|
self.layer_count = layer_count
|
|
self.embed_count = embed_count
|
|
self.image_vocab_count = image_vocab_count
|
|
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
|
|
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
|
|
self.layers: List[DecoderLayer] = nn.ModuleList([
|
|
DecoderLayer(
|
|
head_count=attention_head_count,
|
|
embed_count=embed_count,
|
|
glu_embed_count=glu_embed_count,
|
|
device=device
|
|
)
|
|
for _ in range(layer_count)
|
|
])
|
|
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
|
self.final_ln = nn.LayerNorm(embed_count)
|
|
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
|
|
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
|
|
|
|
|
|
def forward(
|
|
self,
|
|
settings: FloatTensor,
|
|
attention_mask: BoolTensor,
|
|
encoder_state: FloatTensor,
|
|
attention_state: FloatTensor,
|
|
prev_tokens: LongTensor,
|
|
token_index: LongTensor
|
|
) -> Tuple[LongTensor, FloatTensor]:
|
|
image_count = encoder_state.shape[0] // 2
|
|
token_index_batched = token_index[[0] * image_count * 2]
|
|
prev_tokens = prev_tokens[list(range(image_count)) * 2]
|
|
prev_tokens.clamp_(0, self.image_vocab_count)
|
|
decoder_state = self.embed_tokens.forward(prev_tokens)
|
|
decoder_state += self.embed_positions.forward(token_index_batched)
|
|
decoder_state = self.layernorm_embedding.forward(decoder_state)
|
|
decoder_state = decoder_state[:, None]
|
|
for i in range(self.layer_count):
|
|
decoder_state, attention_state[i] = self.layers[i].forward(
|
|
decoder_state,
|
|
encoder_state,
|
|
attention_state[i],
|
|
attention_mask,
|
|
token_index
|
|
)
|
|
decoder_state = self.final_ln(decoder_state)
|
|
logits = self.lm_head(decoder_state)
|
|
temperature = settings[0]
|
|
top_k = settings[1].to(torch.long)
|
|
supercondition_factor = settings[2]
|
|
logits = logits[:, -1, : 2 ** 14]
|
|
logits: FloatTensor = (
|
|
logits[:image_count] * (1 - supercondition_factor) +
|
|
logits[image_count:] * supercondition_factor
|
|
)
|
|
logits_sorted, _ = logits.sort(descending=True)
|
|
is_kept = logits >= logits_sorted[:, top_k: top_k + 1]
|
|
logits -= logits_sorted[:, [0]]
|
|
logits /= temperature
|
|
logits.exp_()
|
|
logits *= is_kept.to(torch.float32)
|
|
image_tokens = torch.multinomial(logits, 1)[:, 0]
|
|
return image_tokens, attention_state |