0.3.13, simplified code, specify device when initializing MinDalle

This commit is contained in:
Brett Kuprel
2022-07-15 17:18:23 -04:00
parent a2dca41623
commit 3c28b1059b
9 changed files with 139 additions and 188 deletions

View File

@@ -20,6 +20,7 @@ torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
IMAGE_TOKEN_COUNT = 256
class MinDalle:
@@ -27,10 +28,15 @@ class MinDalle:
self,
models_root: str = 'pretrained',
dtype: torch.dtype = torch.float32,
device: str = None,
is_mega: bool = True,
is_reusable: bool = True,
is_verbose = True
):
if device == None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if is_verbose: print("using device", device)
self.device = device
self.is_mega = is_mega
self.is_reusable = is_reusable
self.dtype = dtype
@@ -112,12 +118,13 @@ class MinDalle:
glu_embed_count = self.glu_embed_count,
text_token_count = self.text_token_count,
text_vocab_count = self.text_vocab_count,
layer_count = self.layer_count
layer_count = self.layer_count,
device=self.device
).to(self.dtype).eval()
params = torch.load(self.encoder_params_path)
self.encoder.load_state_dict(params, strict=False)
del params
if torch.cuda.is_available(): self.encoder = self.encoder.cuda()
self.encoder = self.encoder.to(device=self.device)
def init_decoder(self):
@@ -130,12 +137,12 @@ class MinDalle:
embed_count = self.embed_count,
glu_embed_count = self.glu_embed_count,
layer_count = self.layer_count,
start_token = self.image_vocab_count
device=self.device
).to(self.dtype).eval()
params = torch.load(self.decoder_params_path)
self.decoder.load_state_dict(params, strict=False)
del params
if torch.cuda.is_available(): self.decoder = self.decoder.cuda()
self.decoder = self.decoder.to(device=self.device)
def init_detokenizer(self):
@@ -146,7 +153,7 @@ class MinDalle:
params = torch.load(self.detoker_params_path)
self.detokenizer.load_state_dict(params)
del params
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
self.detokenizer = self.detokenizer.to(device=self.device)
def images_from_tokens(
@@ -155,7 +162,7 @@ class MinDalle:
is_verbose: bool = False
) -> FloatTensor:
if not self.is_reusable: del self.decoder
if torch.cuda.is_available(): torch.cuda.empty_cache()
torch.cuda.empty_cache()
if not self.is_reusable: self.init_detokenizer()
if is_verbose: print("detokenizing image")
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
@@ -176,13 +183,12 @@ class MinDalle:
text: str,
seed: int,
image_count: int,
log2_mid_count: int,
progressive_outputs: bool = False,
temperature: float = 1,
top_k: int = 256,
supercondition_factor: int = 16,
is_verbose: bool = False
) -> Iterator[FloatTensor]:
assert(log2_mid_count in range(5))
if is_verbose: print("tokenizing text")
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose)
if len(tokens) > self.text_token_count:
@@ -191,49 +197,67 @@ class MinDalle:
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
text_tokens[0, :2] = [tokens[0], tokens[-1]]
text_tokens[1, :len(tokens)] = tokens
text_tokens = torch.tensor(text_tokens).to(torch.long)
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
text_tokens = torch.tensor(
text_tokens,
dtype=torch.long,
device=self.device
)
if not self.is_reusable: self.init_encoder()
if is_verbose: print("encoding text tokens")
with torch.cuda.amp.autocast(dtype=self.dtype):
encoder_state = self.encoder.forward(text_tokens)
if not self.is_reusable: del self.encoder
if torch.cuda.is_available(): torch.cuda.empty_cache()
torch.cuda.empty_cache()
if not self.is_reusable: self.init_decoder()
with torch.cuda.amp.autocast(dtype=self.dtype):
encoder_state, attention_mask, attention_state, image_tokens = (
self.decoder.decode_initial(
seed=seed,
image_count=image_count,
text_tokens=text_tokens,
encoder_state=encoder_state
)
expanded_indices = [0] * image_count + [1] * image_count
text_tokens = text_tokens[expanded_indices]
encoder_state = encoder_state[expanded_indices]
attention_mask = text_tokens.not_equal(1)
attention_state = torch.zeros(
size=(
self.layer_count,
image_count * 4,
IMAGE_TOKEN_COUNT,
self.embed_count
),
device=self.device
)
image_tokens = torch.full(
(IMAGE_TOKEN_COUNT + 1, image_count),
self.image_vocab_count,
dtype=torch.long,
device=self.device
)
if seed > 0: torch.manual_seed(seed)
row_count = 16
for row_index in range(row_count):
if is_verbose:
print('sampling row {} of {}'.format(row_index + 1, row_count))
token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=self.device)
settings = torch.tensor(
[temperature, top_k, supercondition_factor],
dtype=torch.float32,
device=self.device
)
for i in range(IMAGE_TOKEN_COUNT):
with torch.cuda.amp.autocast(dtype=self.dtype):
attention_state, image_tokens = self.decoder.decode_row(
row_index,
temperature=temperature,
top_k=top_k,
supercondition_factor=supercondition_factor,
encoder_state=encoder_state,
image_tokens[i + 1], attention_state = self.decoder.forward(
settings=settings,
attention_mask=attention_mask,
encoder_state=encoder_state,
attention_state=attention_state,
image_tokens_sequence=image_tokens
prev_tokens=image_tokens[i],
token_index=token_indices[[i]]
)
with torch.cuda.amp.autocast(dtype=torch.float32):
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
tokens = image_tokens[:, 1:]
images = self.images_from_tokens(tokens, is_verbose)
yield images
if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256:
yield self.images_from_tokens(
image_tokens=image_tokens[1:].T,
is_verbose=is_verbose
)
def generate_image_stream(
@@ -241,7 +265,7 @@ class MinDalle:
text: str,
seed: int,
grid_size: int,
log2_mid_count: int,
progressive_outputs: bool = False,
temperature: float = 1,
top_k: int = 256,
supercondition_factor: int = 16,
@@ -251,7 +275,7 @@ class MinDalle:
text=text,
seed=seed,
image_count=grid_size ** 2,
log2_mid_count=log2_mid_count,
progressive_outputs=progressive_outputs,
temperature=temperature,
top_k=top_k,
supercondition_factor=supercondition_factor,
@@ -271,13 +295,12 @@ class MinDalle:
supercondition_factor: int = 16,
is_verbose: bool = False
) -> FloatTensor:
log2_mid_count = 0
images_stream = self.generate_images_stream(
text=text,
seed=seed,
image_count=image_count,
temperature=temperature,
log2_mid_count=log2_mid_count,
progressive_outputs=False,
top_k=top_k,
supercondition_factor=supercondition_factor,
is_verbose=is_verbose
@@ -295,12 +318,11 @@ class MinDalle:
supercondition_factor: int = 16,
is_verbose: bool = False
) -> Image.Image:
log2_mid_count = 0
image_stream = self.generate_image_stream(
text=text,
seed=seed,
grid_size=grid_size,
log2_mid_count=log2_mid_count,
progressive_outputs=False,
temperature=temperature,
top_k=top_k,
supercondition_factor=supercondition_factor,

View File

@@ -4,7 +4,6 @@ from torch import nn, LongTensor, FloatTensor, BoolTensor
from .dalle_bart_encoder import GLU, AttentionBase
IMAGE_TOKEN_COUNT = 256
BLANK_TOKEN = 6965
class DecoderCrossAttention(AttentionBase):
@@ -23,21 +22,18 @@ class DecoderCrossAttention(AttentionBase):
class DecoderSelfAttention(AttentionBase):
def __init__(self, head_count: int, embed_count: int):
super().__init__(head_count, embed_count)
token_indices = torch.arange(IMAGE_TOKEN_COUNT)
if torch.cuda.is_available(): token_indices = token_indices.cuda()
self.token_indices = token_indices
def forward(
self,
decoder_state: FloatTensor,
attention_state: FloatTensor,
attn_mask: BoolTensor,
token_index: LongTensor
) -> Tuple[FloatTensor, FloatTensor]:
keys = self.k_proj.forward(decoder_state)
values = self.v_proj.forward(decoder_state)
queries = self.q_proj.forward(decoder_state)
attn_mask = self.token_indices < token_index + 1
attn_mask = attn_mask[None][[0] * decoder_state.shape[0]]
attn_state_new = torch.cat([keys, values]).to(attention_state.dtype)
attention_state[:, token_index] = attn_state_new
batch_count = decoder_state.shape[0]
@@ -52,7 +48,8 @@ class DecoderLayer(nn.Module):
self,
head_count: int,
embed_count: int,
glu_embed_count: int
glu_embed_count: int,
device: str
):
super().__init__()
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
@@ -62,6 +59,7 @@ class DecoderLayer(nn.Module):
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
self.glu = GLU(embed_count, glu_embed_count)
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
def forward(
@@ -73,12 +71,15 @@ class DecoderLayer(nn.Module):
token_index: LongTensor
) -> Tuple[FloatTensor, FloatTensor]:
# Self Attention
self_attn_mask = self.token_indices < token_index + 1
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
residual = decoder_state
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
decoder_state, attention_state = self.self_attn.forward(
decoder_state,
attention_state,
token_index
decoder_state=decoder_state,
attention_state=attention_state,
attn_mask=self_attn_mask,
token_index=token_index
)
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
decoder_state = residual + decoder_state
@@ -87,9 +88,9 @@ class DecoderLayer(nn.Module):
residual = decoder_state
decoder_state = self.pre_encoder_attn_layer_norm.forward(decoder_state)
decoder_state = self.encoder_attn.forward(
decoder_state,
encoder_state,
attention_mask
decoder_state=decoder_state,
encoder_state=encoder_state,
attention_mask=attention_mask
)
decoder_state = self.encoder_attn_layer_norm.forward(decoder_state)
decoder_state = residual + decoder_state
@@ -110,7 +111,7 @@ class DalleBartDecoder(nn.Module):
attention_head_count: int,
glu_embed_count: int,
layer_count: int,
start_token: int
device: str
):
super().__init__()
self.layer_count = layer_count
@@ -120,70 +121,28 @@ class DalleBartDecoder(nn.Module):
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
self.layers: List[DecoderLayer] = nn.ModuleList([
DecoderLayer(
attention_head_count,
embed_count,
glu_embed_count
head_count=attention_head_count,
embed_count=embed_count,
glu_embed_count=glu_embed_count,
device=device
)
for _ in range(layer_count)
])
self.layernorm_embedding = nn.LayerNorm(embed_count)
self.final_ln = nn.LayerNorm(embed_count)
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
self.zero_prob = torch.zeros([1])
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT)
self.start_token = torch.tensor([start_token]).to(torch.long)
if torch.cuda.is_available():
self.zero_prob = self.zero_prob.cuda()
self.token_indices = self.token_indices.cuda()
self.start_token = self.start_token.cuda()
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
def decode_initial(
def forward(
self,
seed: int,
image_count: int,
text_tokens: LongTensor,
encoder_state: FloatTensor
) -> Tuple[FloatTensor, FloatTensor, FloatTensor, LongTensor]:
expanded_indices = [0] * image_count + [1] * image_count
text_tokens = text_tokens[expanded_indices]
encoder_state = encoder_state[expanded_indices]
attention_mask = text_tokens.not_equal(1)
attention_state_shape = (
self.layer_count,
image_count * 4,
IMAGE_TOKEN_COUNT,
self.embed_count
)
attention_state = torch.zeros(attention_state_shape)
image_tokens_sequence = torch.full(
(image_count, IMAGE_TOKEN_COUNT + 1),
BLANK_TOKEN,
dtype=torch.long
)
if torch.cuda.is_available():
attention_state = attention_state.cuda()
image_tokens_sequence = image_tokens_sequence.cuda()
image_tokens_sequence[:, 0] = self.start_token[0]
if seed > 0: torch.manual_seed(seed)
return encoder_state, attention_mask, attention_state, image_tokens_sequence
def decode_step(
self,
temperature: float,
top_k: int,
supercondition_factor: float,
settings: FloatTensor,
attention_mask: BoolTensor,
encoder_state: FloatTensor,
attention_state: FloatTensor,
prev_tokens: LongTensor,
token_index: LongTensor
) -> Tuple[FloatTensor, FloatTensor]:
) -> Tuple[LongTensor, FloatTensor]:
image_count = encoder_state.shape[0] // 2
token_index_batched = token_index[[0] * image_count * 2]
prev_tokens = prev_tokens[list(range(image_count)) * 2]
@@ -202,44 +161,19 @@ class DalleBartDecoder(nn.Module):
)
decoder_state = self.final_ln(decoder_state)
logits = self.lm_head(decoder_state)
a = supercondition_factor
temperature = settings[0]
top_k = settings[1].to(torch.long)
supercondition_factor = settings[2]
logits = logits[:, -1, : 2 ** 14]
logits: FloatTensor = (
logits[:image_count, -1] * (1 - a) +
logits[image_count:, -1] * a
logits[:image_count] * (1 - supercondition_factor) +
logits[image_count:] * supercondition_factor
)
top_logits, _ = logits.topk(top_k, dim=-1)
is_kept = logits >= top_logits[:, [-1]]
logits -= top_logits[:, [0]]
logits /= max(temperature, 1e-6)
probs = torch.where(is_kept, torch.exp(logits), self.zero_prob)
probs[:, 2 ** 14:] = 0 # vqgan vocab_count is only 2 ** 14
return probs, attention_state
def decode_row(
self,
row_index: int,
temperature: float,
top_k: int,
supercondition_factor: float,
encoder_state: FloatTensor,
attention_mask: BoolTensor,
attention_state: FloatTensor,
image_tokens_sequence: LongTensor
) -> Tuple[FloatTensor, LongTensor]:
for col_index in range(16):
i = 16 * row_index + col_index
probs, attention_state = self.decode_step(
temperature = temperature,
top_k = top_k,
supercondition_factor = supercondition_factor,
attention_mask = attention_mask,
encoder_state = encoder_state,
attention_state = attention_state,
prev_tokens = image_tokens_sequence[:, i],
token_index = self.token_indices[[i]]
)
image_tokens_sequence[:, i + 1] = torch.multinomial(probs, 1)[:, 0]
return attention_state, image_tokens_sequence
logits_sorted, _ = logits.sort(descending=True)
is_kept = logits >= logits_sorted[:, top_k: top_k + 1]
logits -= logits_sorted[:, [0]]
logits /= temperature
logits.exp_()
logits *= is_kept.to(torch.float32)
image_tokens = torch.multinomial(logits, 1)[:, 0]
return image_tokens, attention_state

View File

@@ -4,7 +4,7 @@ from torch import nn, BoolTensor, FloatTensor, LongTensor
class GLU(nn.Module):
def __init__(self, count_in_out, count_middle):
def __init__(self, count_in_out: int, count_middle: int):
super().__init__()
self.gelu = nn.GELU()
self.ln0 = nn.LayerNorm(count_in_out)
@@ -33,8 +33,6 @@ class AttentionBase(nn.Module):
self.v_proj = nn.Linear(embed_count, embed_count, bias=False)
self.q_proj = nn.Linear(embed_count, embed_count, bias=False)
self.out_proj = nn.Linear(embed_count, embed_count, bias=False)
self.one = torch.ones((1, 1))
if torch.cuda.is_available(): self.one = self.one.cuda()
def forward(
self,
@@ -48,11 +46,7 @@ class AttentionBase(nn.Module):
queries = queries.reshape(queries.shape[:2] + (self.head_count, -1))
queries /= queries.shape[-1] ** 0.5
attention_bias = torch.where(
attention_mask,
self.one * 0,
self.one * (-torch.inf),
)
attention_bias = (1 - attention_mask.to(torch.float32)) * -1e12
attention_weights: FloatTensor = torch.einsum(
'bqhc,bkhc->bhqk',
queries,
@@ -115,7 +109,8 @@ class DalleBartEncoder(nn.Module):
attention_head_count: int,
text_vocab_count: int,
text_token_count: int,
glu_embed_count: int
glu_embed_count: int,
device: str
):
super().__init__()
self.text_vocab_count = text_vocab_count
@@ -131,17 +126,14 @@ class DalleBartEncoder(nn.Module):
])
self.layernorm_embedding = nn.LayerNorm(embed_count)
self.final_ln = nn.LayerNorm(embed_count)
self.token_indices = torch.arange(text_token_count).to(torch.long)
if torch.cuda.is_available():
self.token_indices = self.token_indices.cuda()
token_indices = torch.arange(text_token_count, device=device)
self.pose_tokens = torch.stack([token_indices] * 2)
def forward(self, text_tokens: LongTensor) -> FloatTensor:
attention_mask = text_tokens.not_equal(1)
pose_tokens = self.token_indices[None][[0] * text_tokens.shape[0]]
text_tokens.clamp_(0, self.text_vocab_count - 1)
encoder_state = (
self.embed_tokens.forward(text_tokens) +
self.embed_positions.forward(pose_tokens)
self.embed_positions.forward(self.pose_tokens)
)
encoder_state = self.layernorm_embedding.forward(encoder_state)
for layer in self.layers: