faster decoder self attention
This commit is contained in:
@@ -20,25 +20,28 @@ class DecoderCrossAttention(AttentionBase):
|
||||
|
||||
|
||||
class DecoderSelfAttention(AttentionBase):
|
||||
def __init__(self, head_count: int, embed_count: int):
|
||||
super().__init__(head_count, embed_count)
|
||||
token_indices = torch.arange(256)
|
||||
if torch.cuda.is_available(): token_indices = token_indices.cuda()
|
||||
self.token_indices = token_indices
|
||||
|
||||
def forward(
|
||||
self,
|
||||
decoder_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
token_mask: BoolTensor
|
||||
token_index: LongTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
keys = self.k_proj.forward(decoder_state)
|
||||
values = self.v_proj.forward(decoder_state)
|
||||
queries = self.q_proj.forward(decoder_state)
|
||||
attention_state = torch.where(
|
||||
token_mask[None, :, None],
|
||||
torch.cat([keys, values]),
|
||||
attention_state
|
||||
)
|
||||
attn_mask = self.token_indices < token_index + 1
|
||||
attn_mask = attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
attention_state[:, token_index] = torch.cat([keys, values])
|
||||
batch_count = decoder_state.shape[0]
|
||||
keys = attention_state[:batch_count]
|
||||
values = attention_state[batch_count:]
|
||||
decoder_state = super().forward(keys, values, queries, attention_mask)
|
||||
decoder_state = super().forward(keys, values, queries, attn_mask)
|
||||
return decoder_state, attention_state
|
||||
|
||||
|
||||
@@ -60,9 +63,6 @@ class DecoderLayer(nn.Module):
|
||||
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||
self.glu = GLU(embed_count, glu_embed_count)
|
||||
|
||||
self.token_indices = torch.arange(self.image_token_count)
|
||||
if torch.cuda.is_available():
|
||||
self.token_indices = self.token_indices.cuda()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@@ -75,14 +75,10 @@ class DecoderLayer(nn.Module):
|
||||
# Self Attention
|
||||
residual = decoder_state
|
||||
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
||||
self_attn_mask = self.token_indices < token_index + 1
|
||||
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
token_mask = self.token_indices == token_index
|
||||
decoder_state, attention_state = self.self_attn.forward(
|
||||
decoder_state,
|
||||
attention_state,
|
||||
self_attn_mask,
|
||||
token_mask
|
||||
token_index
|
||||
)
|
||||
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
|
||||
decoder_state = residual + decoder_state
|
||||
|
Reference in New Issue
Block a user