faster decoder self attention
This commit is contained in:
parent
a79d30f718
commit
377d15cb16
2
min_dalle.ipynb
vendored
2
min_dalle.ipynb
vendored
|
@ -178,8 +178,8 @@
|
|||
"%%time\n",
|
||||
"\n",
|
||||
"text = \"Dali painting of WALL·E\" #@param {type:\"string\"}\n",
|
||||
"seed = 0 #@param {type:\"integer\"}\n",
|
||||
"grid_size = 2 #@param {type:\"integer\"}\n",
|
||||
"seed = -1 #@param {type:\"integer\"}\n",
|
||||
"\n",
|
||||
"display(model.generate_image(text, seed, grid_size))"
|
||||
]
|
||||
|
|
|
@ -165,6 +165,7 @@ class MinDalle:
|
|||
if self.is_verbose: print("encoding text tokens")
|
||||
encoder_state = self.encoder.forward(text_tokens)
|
||||
if not self.is_reusable: del self.encoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
|
||||
if not self.is_reusable: self.init_decoder()
|
||||
if self.is_verbose: print("sampling image tokens")
|
||||
|
@ -175,7 +176,6 @@ class MinDalle:
|
|||
encoder_state
|
||||
)
|
||||
if not self.is_reusable: del self.decoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
return image_tokens
|
||||
|
||||
|
||||
|
@ -187,6 +187,7 @@ class MinDalle:
|
|||
) -> Image.Image:
|
||||
image_count = grid_size ** 2
|
||||
image_tokens = self.generate_image_tokens(text, seed, image_count)
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
if self.is_verbose: print("detokenizing image")
|
||||
images = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
|
@ -194,4 +195,5 @@ class MinDalle:
|
|||
images = images.reshape([grid_size] * 2 + list(images.shape[1:]))
|
||||
image = images.flatten(1, 2).transpose(0, 1).flatten(1, 2)
|
||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
return image
|
|
@ -20,25 +20,28 @@ class DecoderCrossAttention(AttentionBase):
|
|||
|
||||
|
||||
class DecoderSelfAttention(AttentionBase):
|
||||
def __init__(self, head_count: int, embed_count: int):
|
||||
super().__init__(head_count, embed_count)
|
||||
token_indices = torch.arange(256)
|
||||
if torch.cuda.is_available(): token_indices = token_indices.cuda()
|
||||
self.token_indices = token_indices
|
||||
|
||||
def forward(
|
||||
self,
|
||||
decoder_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
token_mask: BoolTensor
|
||||
token_index: LongTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
keys = self.k_proj.forward(decoder_state)
|
||||
values = self.v_proj.forward(decoder_state)
|
||||
queries = self.q_proj.forward(decoder_state)
|
||||
attention_state = torch.where(
|
||||
token_mask[None, :, None],
|
||||
torch.cat([keys, values]),
|
||||
attention_state
|
||||
)
|
||||
attn_mask = self.token_indices < token_index + 1
|
||||
attn_mask = attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
attention_state[:, token_index] = torch.cat([keys, values])
|
||||
batch_count = decoder_state.shape[0]
|
||||
keys = attention_state[:batch_count]
|
||||
values = attention_state[batch_count:]
|
||||
decoder_state = super().forward(keys, values, queries, attention_mask)
|
||||
decoder_state = super().forward(keys, values, queries, attn_mask)
|
||||
return decoder_state, attention_state
|
||||
|
||||
|
||||
|
@ -60,9 +63,6 @@ class DecoderLayer(nn.Module):
|
|||
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
||||
self.glu = GLU(embed_count, glu_embed_count)
|
||||
|
||||
self.token_indices = torch.arange(self.image_token_count)
|
||||
if torch.cuda.is_available():
|
||||
self.token_indices = self.token_indices.cuda()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -75,14 +75,10 @@ class DecoderLayer(nn.Module):
|
|||
# Self Attention
|
||||
residual = decoder_state
|
||||
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
||||
self_attn_mask = self.token_indices < token_index + 1
|
||||
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
token_mask = self.token_indices == token_index
|
||||
decoder_state, attention_state = self.self_attn.forward(
|
||||
decoder_state,
|
||||
attention_state,
|
||||
self_attn_mask,
|
||||
token_mask
|
||||
token_index
|
||||
)
|
||||
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
|
||||
decoder_state = residual + decoder_state
|
||||
|
|
|
@ -13,16 +13,16 @@ class Predictor(BasePredictor):
|
|||
description='Text',
|
||||
default='Dali painting of WALL·E'
|
||||
),
|
||||
seed: int = Input(
|
||||
description='Set the seed to a positive number for reproducible results',
|
||||
default=-1
|
||||
),
|
||||
grid_size: int = Input(
|
||||
description='Size of the image grid',
|
||||
ge=1,
|
||||
le=4,
|
||||
default=4
|
||||
)
|
||||
),
|
||||
seed: int = Input(
|
||||
description='Set the seed to a positive number for reproducible results',
|
||||
default=-1
|
||||
),
|
||||
) -> Path:
|
||||
image = self.model.generate_image(text, seed, grid_size=grid_size)
|
||||
out_path = Path(tempfile.mkdtemp()) / 'output.jpg'
|
||||
|
|
Loading…
Reference in New Issue
Block a user