min-dalle-test/image_from_text.py

80 lines
2.2 KiB
Python
Raw Normal View History

2022-06-27 19:46:04 +00:00
import argparse
import os
from PIL import Image
from min_dalle import MinDalle
2022-07-14 18:22:06 +00:00
import torch
2022-06-27 19:46:04 +00:00
parser = argparse.ArgumentParser()
2022-06-27 20:49:42 +00:00
parser.add_argument('--mega', action='store_true')
parser.add_argument('--no-mega', dest='mega', action='store_false')
parser.set_defaults(mega=False)
2022-07-14 18:22:06 +00:00
parser.add_argument('--fp16', action='store_true')
2022-07-04 20:06:49 +00:00
parser.add_argument('--text', type=str, default='Dali painting of WALL·E')
parser.add_argument('--seed', type=int, default=-1)
parser.add_argument('--grid-size', type=int, default=1)
parser.add_argument('--image-path', type=str, default='generated')
parser.add_argument('--models-root', type=str, default='pretrained')
2022-07-11 16:28:20 +00:00
parser.add_argument('--top_k', type=int, default=256)
2022-06-27 19:46:04 +00:00
2022-07-04 20:06:49 +00:00
def ascii_from_image(image: Image.Image, size: int = 128) -> str:
2022-07-14 15:28:03 +00:00
gray_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata()
2022-06-27 19:46:04 +00:00
chars = list('.,;/IOX')
2022-07-14 15:28:03 +00:00
chars = [chars[i * len(chars) // 256] for i in gray_pixels]
2022-06-27 19:46:04 +00:00
chars = [chars[i * size: (i + 1) * size] for i in range(size // 2)]
return '\n'.join(''.join(row) for row in chars)
2022-06-27 20:49:42 +00:00
def save_image(image: Image.Image, path: str):
2022-06-27 19:46:04 +00:00
if os.path.isdir(path):
2022-07-14 23:24:04 +00:00
path = os.path.join(path, 'generated.png')
elif not path.endswith('.png'):
path += '.png'
2022-06-27 19:46:04 +00:00
print("saving image to", path)
image.save(path)
return image
def generate_image(
is_mega: bool,
text: str,
seed: int,
grid_size: int,
2022-07-11 16:28:20 +00:00
top_k: int,
image_path: str,
2022-07-14 18:22:06 +00:00
models_root: str,
fp16: bool,
):
model = MinDalle(
2022-07-01 22:16:55 +00:00
is_mega=is_mega,
2022-07-02 03:39:48 +00:00
models_root=models_root,
2022-07-01 22:16:55 +00:00
is_reusable=False,
2022-07-14 18:22:06 +00:00
is_verbose=True,
dtype=torch.float16 if fp16 else torch.float32
2022-07-01 22:16:55 +00:00
)
2022-07-11 16:28:20 +00:00
image = model.generate_image(
text,
seed,
grid_size,
top_k=top_k,
is_verbose=True
)
2022-07-05 00:02:33 +00:00
save_image(image, image_path)
print(ascii_from_image(image, size=128))
2022-06-27 19:46:04 +00:00
if __name__ == '__main__':
args = parser.parse_args()
2022-06-27 20:49:42 +00:00
print(args)
generate_image(
is_mega=args.mega,
text=args.text,
seed=args.seed,
grid_size=args.grid_size,
2022-07-11 16:28:20 +00:00
top_k=args.top_k,
image_path=args.image_path,
2022-07-14 18:22:06 +00:00
models_root=args.models_root,
fp16=args.fp16,
2022-07-14 23:24:04 +00:00
)