import argparse import os from PIL import Image from min_dalle import MinDalle import torch parser = argparse.ArgumentParser() parser.add_argument('--mega', action='store_true') parser.add_argument('--no-mega', dest='mega', action='store_false') parser.set_defaults(mega=False) parser.add_argument('--fp16', action='store_true') parser.add_argument('--text', type=str, default='Dali painting of WALL·E') parser.add_argument('--seed', type=int, default=-1) parser.add_argument('--grid-size', type=int, default=1) parser.add_argument('--image-path', type=str, default='generated') parser.add_argument('--models-root', type=str, default='pretrained') parser.add_argument('--top_k', type=int, default=256) def ascii_from_image(image: Image.Image, size: int = 128) -> str: gray_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata() chars = list('.,;/IOX') chars = [chars[i * len(chars) // 256] for i in gray_pixels] chars = [chars[i * size: (i + 1) * size] for i in range(size // 2)] return '\n'.join(''.join(row) for row in chars) def save_image(image: Image.Image, path: str): if os.path.isdir(path): path = os.path.join(path, 'generated.png') elif not path.endswith('.png'): path += '.png' print("saving image to", path) image.save(path) return image def generate_image( is_mega: bool, text: str, seed: int, grid_size: int, top_k: int, image_path: str, models_root: str, fp16: bool, ): model = MinDalle( is_mega=is_mega, models_root=models_root, is_reusable=False, is_verbose=True, dtype=torch.float16 if fp16 else torch.float32 ) image = model.generate_image( text, seed, grid_size, top_k=top_k, is_verbose=True ) save_image(image, image_path) print(ascii_from_image(image, size=128)) if __name__ == '__main__': args = parser.parse_args() print(args) generate_image( is_mega=args.mega, text=args.text, seed=args.seed, grid_size=args.grid_size, top_k=args.top_k, image_path=args.image_path, models_root=args.models_root, fp16=args.fp16, )