feat: add garage door CNN training script

Co-authored-by: aider (gemini/gemini-2.5-pro-preview-05-06) <aider@aider.chat>
This commit is contained in:
2025-07-31 15:58:21 -06:00
parent 64a2b03507
commit 4d6eb70728

165
train.py
View File

@@ -0,0 +1,165 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import datasets, transforms
from PIL import Image, ImageDraw
import os
# Custom transform to crop a triangle from the lower right corner
class CropLowerRightTriangle(object):
"""
Crops a rectangular area from the lower right corner of an image,
then masks it to a triangle.
The user can adjust the geometry of the triangle.
"""
def __init__(self, triangle_width, triangle_height):
self.triangle_width = triangle_width
self.triangle_height = triangle_height
def __call__(self, img):
img_width, img_height = img.size
# Define the bounding box for the crop
left = img_width - self.triangle_width
top = img_height - self.triangle_height
right = img_width
bottom = img_height
# Crop a rectangle from the lower right corner
cropped_img = img.crop((left, top, right, bottom))
# Create a triangular mask. The mask is the same size as the cropped rectangle.
mask = Image.new('L', (self.triangle_width, self.triangle_height), 0)
# The polygon vertices define the lower-right triangle within the rectangle.
# Vertices are (top-right, bottom-left, bottom-right).
polygon = [(self.triangle_width, 0), (0, self.triangle_height), (self.triangle_width, self.triangle_height)]
ImageDraw.Draw(mask).polygon(polygon, fill=255)
# Create a black background image.
background = Image.new("RGB", cropped_img.size, (0, 0, 0))
# Paste the original cropped image onto the background using the mask.
# Where the mask is white, the image is pasted. Where black, it's not.
background.paste(cropped_img, (0, 0), mask)
return background
# Define the CNN
class GarageDoorCNN(nn.Module):
def __init__(self, resize_dim=64):
super(GarageDoorCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.relu3 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
# Calculate the size of the flattened features after convolutions and pooling
final_dim = resize_dim // (2**3) # 3 pooling layers with stride 2
self.fc1_input_features = 64 * final_dim * final_dim
self.fc1 = nn.Linear(self.fc1_input_features, 512)
self.relu4 = nn.ReLU()
self.fc2 = nn.Linear(512, 2) # 2 classes: open, closed
def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = self.pool3(self.relu3(self.conv3(x)))
x = x.view(-1, self.fc1_input_features) # Flatten the tensor
x = self.relu4(self.fc1(x))
x = self.fc2(x)
return x
def train_model():
# --- Hyperparameters and Configuration ---
DATA_DIR = 'data'
MODEL_SAVE_PATH = 'garage_door_cnn.pth'
NUM_EPOCHS = 10
BATCH_SIZE = 32
LEARNING_RATE = 0.001
# For the custom crop transform. User can adjust these.
TRIANGLE_CROP_WIDTH = 400
TRIANGLE_CROP_HEIGHT = 400
RESIZE_DIM = 64 # Resize cropped image to this dimension (square)
# --- Data Preparation ---
# Define transforms
data_transforms = transforms.Compose([
CropLowerRightTriangle(triangle_width=TRIANGLE_CROP_WIDTH, triangle_height=TRIANGLE_CROP_HEIGHT),
transforms.Resize((RESIZE_DIM, RESIZE_DIM)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Load dataset with ImageFolder
full_dataset = datasets.ImageFolder(DATA_DIR, transform=data_transforms)
# Split into training and validation sets
train_size = int(0.8 * len(full_dataset))
val_size = len(full_dataset) - train_size
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
# --- Model, Loss, Optimizer ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model = GarageDoorCNN(resize_dim=RESIZE_DIM).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
# --- Training Loop ---
print("Starting training...")
for epoch in range(NUM_EPOCHS):
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_dataset)
print(f"Epoch {epoch+1}/{NUM_EPOCHS}, Training Loss: {epoch_loss:.4f}")
# --- Validation Loop ---
model.eval()
val_loss = 0.0
corrects = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
corrects += torch.sum(preds == labels.data)
val_epoch_loss = val_loss / len(val_dataset)
val_epoch_acc = corrects.double() / len(val_dataset)
print(f"Validation Loss: {val_epoch_loss:.4f}, Accuracy: {val_epoch_acc:.4f}")
# --- Save the trained model ---
torch.save(model.state_dict(), MODEL_SAVE_PATH)
print(f"Model saved to {MODEL_SAVE_PATH}")
if __name__ == '__main__':
# Check if data directory exists
if not os.path.isdir('data/open') or not os.path.isdir('data/closed'):
print("Error: Data directories 'data/open' and 'data/closed' not found.")
print("Please create them and place your image snapshots inside.")
else:
train_model()