minecraft-bot/bot.py

669 lines
18 KiB
Python

import os
import time
import functools
from math import ceil, floor, hypot, sqrt
from itertools import count
import blocks
from minecraft import authentication
from minecraft.exceptions import YggdrasilError
from minecraft.networking.connection import Connection
from minecraft.networking.packets import Packet, clientbound, serverbound
from minecraft.compat import input
from minecraft.managers import ChunksManager
class AStarTimeout(Exception):
pass
class DataManager:
def __init__(self):
self.blocks_states = {}
self.blocks_properties = {}
self.registries = {}
self.biomes = {}
self.entity_type = {}
self.blocks = {}
from panda3d.core import *
from astar import AStar
BLOCK_ABOVE = (0, +1, 0)
BLOCK_ABOVE2 = (0, +2, 0)
BLOCK_ABOVE3 = (0, +3, 0)
BLOCK_ABOVE4 = (0, +4, 0)
BLOCK_BELOW = (0, -1, 0)
TRAVERSE_NORTH = (0, 0, -1)
TRAVERSE_SOUTH = (0, 0, +1)
TRAVERSE_EAST = (+1, 0, 0)
TRAVERSE_WEST = (-1, 0, 0)
ASCEND_NORTH = (0, +1, -1)
ASCEND_SOUTH = (0, +1, +1)
ASCEND_EAST = (+1, +1, 0)
ASCEND_WEST = (-1, +1, 0)
DESCEND_EAST = (+1, -1, 0)
DESCEND_WEST = (-1, -1, 0)
DESCEND_NORTH = (0, -1, -1)
DESCEND_SOUTH = (0, -1, +1)
DESCEND2_EAST = (+1, -2, 0)
DESCEND2_WEST = (-1, -2, 0)
DESCEND2_NORTH = (0, -2, -1)
DESCEND2_SOUTH = (0, -2, +1)
DESCEND3_EAST = (+1, -3, 0)
DESCEND3_WEST = (-1, -3, 0)
DESCEND3_NORTH = (0, -3, -1)
DESCEND3_SOUTH = (0, -3, +1)
DIAGONAL_NORTHEAST = (+1, 0, -1)
DIAGONAL_NORTHWEST = (-1, 0, -1)
DIAGONAL_SOUTHEAST = (+1, 0, +1)
DIAGONAL_SOUTHWEST = (-1, 0, +1)
PARKOUR_NORTH = (0, 0, -2)
PARKOUR_SOUTH = (0, 0, +2)
PARKOUR_EAST = (+2, 0, 0)
PARKOUR_WEST = (-2, 0, 0)
TRAVERSE = [
TRAVERSE_NORTH,
TRAVERSE_SOUTH,
TRAVERSE_EAST,
TRAVERSE_WEST,
]
ASCEND = [
ASCEND_NORTH,
ASCEND_SOUTH,
ASCEND_EAST,
ASCEND_WEST,
]
DESCEND = [
DESCEND_EAST,
DESCEND_WEST,
DESCEND_NORTH,
DESCEND_SOUTH,
]
DESCEND2 = [
DESCEND2_EAST,
DESCEND2_WEST,
DESCEND2_NORTH,
DESCEND2_SOUTH,
]
DESCEND3 = [
DESCEND3_EAST,
DESCEND3_WEST,
DESCEND3_NORTH,
DESCEND3_SOUTH,
]
DIAGONAL = [
DIAGONAL_NORTHEAST,
DIAGONAL_NORTHWEST,
DIAGONAL_SOUTHEAST,
DIAGONAL_SOUTHWEST,
]
PARKOUR = [
PARKOUR_NORTH,
PARKOUR_SOUTH,
PARKOUR_EAST,
PARKOUR_WEST,
]
HALF_PARKOUR = {
(0, 0, -2): (0, 0, -1),
(0, 0, 2): (0, 0, 1),
(2, 0, 0): (1, 0, 0),
(-2, 0, 0): (-1, 0, 0),
}
HYPOT_LUT = {
(0, -1): 1.0,
(0, 1): 1.0,
(1, 0): 1.0,
(-1, 0): 1.0,
(1, -1): 1.414,
(-1, -1): 1.414,
(1, 1): 1.414,
(-1, 1): 1.414,
(0, 2): 2.0,
(-2, 0): 2.0,
(2, 0): 2.0,
(0, -2): 2.0,
}
def padd(p1, p2):
return (p1[0] + p2[0], p1[1] + p2[1], p1[2] + p2[2])
def pint(p):
return (int(p[0]), int(p[1]), int(p[2]))
# larger started being slower
BLOCK_CACHE_SIZE = 2**14
class MazeSolver(AStar):
def __init__(self, chunks):
self.chunks = chunks
self.start_time = time.time()
@functools.lru_cache(maxsize=BLOCK_CACHE_SIZE)
def bair(self, p):
return self.chunks.get_block_at(*p) in blocks.NON_SOLID_IDS
@functools.lru_cache(maxsize=BLOCK_CACHE_SIZE)
def bavoid(self, p):
return self.chunks.get_block_at(*p) in blocks.AVOID_IDS
def check_traverse(self, node, offset):
dest = padd(node, offset)
if not self.bair(dest):
return False
if self.bair(padd(dest, BLOCK_BELOW)):
return False
if not self.bair(padd(dest, BLOCK_ABOVE)):
return False
if self.bavoid(dest):
return False
if self.bavoid(padd(dest, BLOCK_BELOW)):
return False
if self.bavoid(padd(dest, BLOCK_ABOVE)):
return False
return True
def check_diagonal(self, node, offset):
if not self.check_traverse(node, offset):
return False
dest = padd(node, offset)
thru1 = (node[0], node[1], dest[2])
thru2 = (dest[0], node[1], node[2])
if not self.bair(thru1):
return False
if not self.bair(padd(thru1, BLOCK_ABOVE)):
return False
if self.bavoid(padd(thru1, BLOCK_BELOW)):
return False
if not self.bair(thru2):
return False
if not self.bair(padd(thru2, BLOCK_ABOVE)):
return False
if self.bavoid(padd(thru2, BLOCK_BELOW)):
return False
return True
def check_ascend(self, node, offset):
if not self.check_traverse(node, offset):
return False
dest = padd(node, offset)
if not self.bair(padd(node, BLOCK_ABOVE2)):
return False
if not self.bair(padd(dest, BLOCK_ABOVE2)):
return False
return True
def check_descend(self, node, offset):
if not self.check_traverse(node, offset):
return False
dest = padd(node, offset)
if not self.bair(padd(dest, BLOCK_ABOVE2)):
return False
return True
def check_descend2(self, node, offset):
if not self.check_descend(node, offset):
return False
dest = padd(node, offset)
if not self.bair(padd(dest, BLOCK_ABOVE3)):
return False
return True
def check_descend3(self, node, offset):
if not self.check_descend2(node, offset):
return False
dest = padd(node, offset)
if not self.bair(padd(dest, BLOCK_ABOVE4)):
return False
return True
def check_parkour(self, node, offset):
dest = padd(node, offset)
half_offset = HALF_PARKOUR[offset]
middle = padd(node, half_offset)
# dont jump if we can walk instead
if not self.bair(padd(middle, BLOCK_BELOW)):
return False
if not self.check_ascend(node, offset):
return False
if not self.bair(padd(middle, BLOCK_ABOVE)):
return False
if not self.bair(padd(middle, BLOCK_ABOVE2)):
return False
return True
def neighbors(self, node):
results = []
for offset in TRAVERSE:
if self.check_traverse(node, offset):
results.append(padd(node, offset))
for offset in DIAGONAL:
if self.check_diagonal(node, offset):
results.append(padd(node, offset))
for offset in ASCEND:
if self.check_ascend(node, offset):
results.append(padd(node, offset))
for offset in DESCEND:
if self.check_descend(node, offset):
results.append(padd(node, offset))
for offset in DESCEND2:
if self.check_descend2(node, offset):
results.append(padd(node, offset))
for offset in DESCEND3:
if self.check_descend3(node, offset):
results.append(padd(node, offset))
for offset in PARKOUR:
if self.check_parkour(node, offset):
results.append(padd(node, offset))
if not results:
if time.time() - self.start_time > 2.0:
raise(AStarTimeout)
return results
def distance_between(self, n1, n2):
(x1, y1, z1) = n1
(x2, y2, z2) = n2
return HYPOT_LUT[x2 - x1, z2 - z1]
def heuristic_cost_estimate(self, n1, n2):
(x1, y1, z1) = n1
(x2, y2, z2) = n2
return hypot(x2 - x1, z2 - z1)
def spiral(n):
# return x, 0, z coords along a spiral at step n
n += 1
k = ceil((sqrt(n)-1)/2)
t = 2 * k + 1
m = t**2
t = t - 1
if n >= m-t:
return k-(m-n), 0, -k
else:
m = m-t
if n >= m-t:
return -k, 0, -k+(m-n)
else:
m = m-t
if n >= m-t:
return -k+(m-n), 0, k
else:
return k, 0, k-(m-n-t)
def alternate(n, amount):
# return 0, y, 0 where y alternates +/- by amount
# example: 0, 2, -2, 4, -4, 6, -6 for amount = 2
sign = 1 if n % 2 else -1
return (0, ceil(n/2) * sign * amount, 0)
BLOCK_ABOVE = (0, +1, 0)
BLOCK_BELOW = (0, -1, 0)
CHECK_NORTH = (0, 0, -1)
CHECK_SOUTH = (0, 0, +1)
CHECK_EAST = (+1, 0, 0)
CHECK_WEST = (-1, 0, 0)
CHECK_DIRECTIONS = [
CHECK_NORTH,
CHECK_SOUTH,
CHECK_EAST,
CHECK_WEST,
]
class MCWorld:
def __init__(self, chunks):
self.chunks = chunks
def block_at(self, x, y, z):
return self.chunks.get_block_at(x, y, z)
def find_blocks(self, center, distance, block_ids, limit=0):
# search in a spiral from center to all blocks with ID
result = []
for n in count():
offset = spiral(n)
check = padd(center, offset)
if self.block_at(*check) in block_ids:
if hypot(*offset) < distance:
result.append(check)
if limit and len(result) == limit:
return result
if offset[0] > distance:
return result
def find_tree(self, center, distance):
logs = []
for i in range(5):
check = padd(center, alternate(i, 4))
logs.extend(self.find_blocks(center, distance, blocks.LOG_IDS, 5))
for log in logs:
# crawl to the top log
while self.block_at(*padd(log, BLOCK_ABOVE)) in blocks.LOG_IDS:
log = padd(log, BLOCK_ABOVE)
# make sure it's a tree
if self.block_at(*padd(log, BLOCK_ABOVE)) in blocks.LEAF_IDS:
break
else: # for
return None
# crawl to the bottom log
while self.block_at(*padd(log, BLOCK_BELOW)) in blocks.LOG_IDS:
log = padd(log, BLOCK_BELOW)
return log
def find_tree_openings(self, tree):
# returns coords in a cardinal direction where we can stand by tree
maze_solver = MazeSolver(self.chunks)
result = []
for distance in range(5):
for direction in CHECK_DIRECTIONS:
offset = (0, 0, 0)
for _ in range(distance):
offset = padd(offset, direction)
if maze_solver.check_traverse(tree, offset):
result.append(padd(tree, offset))
return result
def navigate_to_opening(self, start, opening):
maze_solver = MazeSolver(self.chunks)
try:
return list(maze_solver.astar(start, opening))
except AStarTimeout:
return None
TICK = 0.05
ANGLE_DIR = LVector3f(x=0, y=0, z=-1)
ANGLE_REF = LVector3f(x=0, y=1, z=0)
YAW_LOOK_AHEAD = 4
running = True
get_mod_time = lambda: os.path.getmtime('bot.py')
last_mod_time = get_mod_time()
# state dictionary
s = dict()
pitch = 0
def cap(x, amount):
sign = 1 if x >= 0 else -1
return sign * min(abs(x), amount)
def tick(connection, player_info):
target = None
p = player_info.pos
if len(s['path']):
target = LPoint3f(s['path'][0])
target.x += 0.5
target.z += 0.5
if target:
d = p - target
# jump up block
if d.y < -0.9 and not s['y_v']:
s['y_v'] = 10.0
s['y_a'] = -36.0
# jump gap
if d.xz.length() > 1.9 and not s['y_v']:
s['y_v'] = 10.0
s['y_a'] = -36.0
if d.length() > 0.2:
if s['y_v'] < 5:
p.x -= cap(d.x, 0.2)
p.z -= cap(d.z, 0.2)
else:
s['path'].pop(0)
if s['y_v'] or s['y_a']:
p.y += s['y_v'] * TICK
s['y_v'] += s['y_a'] * TICK
if player_info.chunks.get_block_at(int(p.x), ceil(p.y-1), int(p.z)) not in blocks.NON_SOLID_IDS:
p.y = ceil(p.y)
s['y_v'] = 0
s['y_a'] = 0
else:
s['y_a'] = -36.0
look_at = None
if len(s['path']) > YAW_LOOK_AHEAD:
look_at = LPoint3f(s['path'][YAW_LOOK_AHEAD])
elif len(s['path']):
look_at = LPoint3f(s['path'][-1])
if look_at:
look_at.x += 0.5
look_at.z += 0.5
look_at_d = p - look_at
if look_at_d.length() > 0.6:
target_yaw = look_at_d.normalized().signedAngleDeg(other=ANGLE_DIR, ref=ANGLE_REF)
target_yaw_d = target_yaw - s['yaw']
target_yaw_d = (target_yaw_d + 180) % 360 - 180
s['yaw'] += cap(target_yaw_d, 30)
packet = serverbound.play.PositionAndLookPacket(x=p.x, feet_y=p.y, z=p.z, pitch=s['pitch'], yaw=s['yaw'], on_ground=True)
connection.write_packet(packet, force=True)
def init(connection, player_info):
p = player_info.pos
s['path'] = []
s['y_v'] = 0
s['y_a'] = 0
s['yaw'] = 360
s['pitch'] = 0
def main(connection, player_info):
def handle_join_game(join_game_packet):
print('Connected.')
print(join_game_packet)
player_info.eid = join_game_packet
connection.register_packet_listener(
handle_join_game, clientbound.play.JoinGamePacket)
def h_position_and_look(packet):
print('pos and look:')
print(packet)
p = LPoint3f(x=packet.x, y=packet.y, z=packet.z)
player_info.pos = p
connection.register_packet_listener(
h_position_and_look, clientbound.play.PlayerPositionAndLookPacket)
def x(p):
#print('block change:')
#print(p)
if p.block_state_id == 3885:
try:
s['goal'] = LPoint3f(x=p.location[0], y=p.location[1], z=p.location[2])
print('new waypoint:', s['goal'])
start = time.time()
solution = MazeSolver(player_info.chunks).astar(pint(player_info.pos), pint(s['goal']))
if solution:
solution = list(solution)
#s['path'] = solution
print(len(solution))
print(round(time.time() - start, 3), 'seconds')
else:
packet = serverbound.play.ChatPacket()
packet.message = 'No path found'
connection.write_packet(packet)
#s['y_v'] = 10.0
#s['y_a'] = -36.0
except BaseException as e:
import traceback
print(traceback.format_exc())
connection.register_packet_listener(
x, clientbound.play.BlockChangePacket)
def print_chat(chat_packet):
print("Message (%s): %s" % (
chat_packet.field_string('position'), chat_packet.json_data))
if '!reload' in chat_packet.json_data:
global running
running = False
elif '!afk' in chat_packet.json_data:
packet = serverbound.play.ChatPacket()
packet.message = '/afk'
connection.write_packet(packet)
elif '!respawn' in chat_packet.json_data:
packet = serverbound.play.ClientStatusPacket()
packet.action_id = serverbound.play.ClientStatusPacket.RESPAWN
connection.write_packet(packet)
elif '!chunk' in chat_packet.json_data:
print(len(player_info.chunks.chunks.keys()))
print(player_info.chunks.chunks[(38, 4, 33)].__dict__)
elif '!block' in chat_packet.json_data:
block = player_info.chunks.get_block_at(616, 78, 496)
packet = serverbound.play.ChatPacket()
packet.message = str(block)
connection.write_packet(packet)
elif '!path' in chat_packet.json_data:
try:
s['goal'] = LPoint3f(655, 86, 341)
print('new waypoint:', s['goal'])
start = time.time()
solution = MazeSolver(player_info.chunks).astar(pint(player_info.pos), pint(s['goal']))
solution = list(solution)
#s['path'] = solution
print(len(solution))
print(round(time.time() - start, 3), 'seconds')
except BaseException as e:
import traceback
print(traceback.format_exc())
elif '!tree' in chat_packet.json_data:
try:
mc_world = MCWorld(player_info.chunks)
start = time.time()
coords = mc_world.find_tree(pint(player_info.pos), 100)
print(coords)
openings = mc_world.find_tree_openings(coords)
print(openings)
path = mc_world.navigate_to_opening(pint(player_info.pos), openings[0])
print(path)
print(round(time.time() - start, 3), 'seconds')
except BaseException as e:
import traceback
print(traceback.format_exc())
connection.register_packet_listener(
print_chat, clientbound.play.ChatMessagePacket)
if not player_info.chunks:
player_info.mcdata = DataManager()
player_info.chunks = ChunksManager(player_info.mcdata)
player_info.chunks.register(connection)
#packet = serverbound.play.ChatPacket()
#packet.message = '> reloaded'
#connection.write_packet(packet)
print()
print()
print('Reloaded.')
#if player_info.pos:
# print('Loaded positions', player_info.pos)
try:
while not player_info.pos:
time.sleep(TICK)
print('Player loaded.')
x, y, z = pint(player_info.pos)
while (floor(x/16), floor(y/16), floor(z/16)) not in player_info.chunks.chunks:
time.sleep(TICK)
print('Chunks loaded.')
init(connection, player_info)
while running:
tick(connection, player_info)
time.sleep(TICK)
if get_mod_time() != last_mod_time:
break
finally:
connection.packet_listeners = []
connection.early_packet_listeners = []
connection.outgoing_packet_listeners = []
connection.early_outgoing_packet_listeners = []