import re import time import importlib import random from math import hypot from itertools import count from munch import Munch from copy import copy from panda3d.core import LPoint3f from minecraft.networking.packets import Packet, clientbound, serverbound from minecraft.networking.types import BlockFace from protocol.packets import ( SetSlotPacket, PlayerDiggingPacket, BlockBreakAnimationPacket, AcknowledgePlayerDiggingPacket, HeldItemChangePacket, PickItemPacket, OpenWindowPacket, ClickWindowPacket, CloseWindowPacket, ServerWindowConfirmationPacket, ClientWindowConfirmationPacket, EntityMetadataPacket, SpawnLivingEntityPacket, EntityPositionRotationPacket, DestroyEntitiesPacket, ) from protocol.types import Slot import utils importlib.reload(utils) import path importlib.reload(path) import blocks importlib.reload(blocks) import items importlib.reload(items) import data importlib.reload(data) class MCWorld: def __init__(self, global_state): self.g = global_state def block_at(self, x, y, z): return self.g.chunks.get_block_at(x, y, z) def find_blocks_3d(self, center, block_ids, distance=0, y_limit=0): for offset in utils.search_3d(distance, y_limit): check = utils.padd(center, offset) if self.block_at(*check) in block_ids: yield check def find_blocks(self, center, distance, block_ids, limit=0): # search in a spiral from center to all blocks with ID result = [] for n in count(): offset = utils.spiral(n) check = utils.padd(center, offset) if self.block_at(*check) in block_ids: if hypot(*offset) < distance: result.append(check) if limit and len(result) == limit: return result if offset[0] > distance: return result def find_trees(self, center, distance): logs = [] for i in range(5): check = utils.padd(center, utils.alternate(i, 3)) logs.extend(self.find_blocks(check, distance, blocks.LOG_IDS, 50)) trees = [] for log in logs: # crawl to the bottom log while self.block_at(*utils.padd(log, path.BLOCK_BELOW)) in blocks.LOG_IDS: log = utils.padd(log, path.BLOCK_BELOW) # make sure we are on the ground if self.block_at(*utils.padd(log, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS: continue # crawl to the top log to count log_count = 1 while self.block_at(*utils.padd(log, path.BLOCK_ABOVE)) in blocks.LOG_IDS: log = utils.padd(log, path.BLOCK_ABOVE) log_count += 1 # make sure it's a good tree if self.block_at(*utils.padd(log, path.BLOCK_ABOVE)) in blocks.LEAF_IDS and log_count > 2: # crawl back to the bottom log while self.block_at(*utils.padd(log, path.BLOCK_BELOW)) in blocks.LOG_IDS: log = utils.padd(log, path.BLOCK_BELOW) trees.append(log) trees.sort(key=lambda x: utils.phyp(center, x)) return trees def find_tree_openings(self, tree): # returns coords in a cardinal direction where we can stand by tree maze_solver = path.Pathfinder(self.g.chunks) result = [] # TODO: make sure only non-solid and leaves between # make sure traversable too and non-avoid for distance in range(5): for direction in path.CHECK_DIRECTIONS: offset = utils.pmul(direction, distance+1) if maze_solver.check_traverse(tree, offset): result.append(utils.padd(tree, offset)) return result def path_to_place(self, start, place): maze_solver = path.Pathfinder(self.g.chunks) try: s = maze_solver.astar(start, place) return list(s) if s else None except path.AStarTimeout: return None def find_bed_areas(self, center, distance): bed_clearance = 25 # 5x5 area clear_distance = 3 for a in self.find_blocks_3d(center, [0], distance, 10): # check for air around the area if len(self.find_blocks(a, clear_distance, [0], bed_clearance)) < bed_clearance: continue # check for ground around the area if len(self.find_blocks(utils.padd(a, path.BLOCK_BELOW), clear_distance, blocks.NON_SOLID_IDS, bed_clearance)): continue # check for air above the area if len(self.find_blocks(utils.padd(a, path.BLOCK_ABOVE), clear_distance, [0], bed_clearance)) < bed_clearance: continue yield a def find_cache_areas(self, center, distance): return self.find_bed_areas(center, distance) def sand_adjacent_safe(self, sand): for direction in path.CHECK_DIRECTIONS: if self.block_at(*utils.padd(sand, direction)) in blocks.AVOID_IDS: return False return True def find_sand(self, center, distance, origin): sand = [] for i in range(10): check = utils.padd(center, utils.alternate(i, 1)) sand.extend(self.find_blocks(check, distance, [blocks.SAND], 20)) safe_sand = [] for s in sand: # make sure it has solid below if self.block_at(*utils.padd(s, path.BLOCK_BELOW)) in blocks.NON_SOLID_IDS: continue # make sure it has solid two below - prevent hanging sand if self.block_at(*utils.padd(s, path.BLOCK_BELOW2)) in blocks.NON_SOLID_IDS: continue # and walkable air above if self.block_at(*utils.padd(s, path.BLOCK_ABOVE)) not in blocks.NON_SOLID_IDS: continue if not self.sand_adjacent_safe(s): continue safe_sand.append(s) safe_sand.sort(key=lambda x: utils.phyp_bias(center, x, origin)) return safe_sand def find_bed_openings(self, area): # returns coords in a cardinal direction where we can stand by bed result = [] for direction in path.CHECK_DIRECTIONS: result.append(utils.padd(area, direction)) return result def find_cache_openings(self, area): return self.find_bed_openings(area) def find_objects(self, object_ids): result = [] for eid, obj in copy(self.g.objects).items(): if obj.get('item_id', None) in object_ids: result.append(obj) return result class Game: def __init__(self, global_state): self.g = global_state register = self.g.connection.register_packet_listener register(self.handle_block_change, clientbound.play.BlockChangePacket) register(self.handle_join_game, clientbound.play.JoinGamePacket) register(self.handle_position_and_look, clientbound.play.PlayerPositionAndLookPacket) register(self.handle_time_update, clientbound.play.TimeUpdatePacket) register(self.handle_set_slot, SetSlotPacket) register(self.handle_break_animation, BlockBreakAnimationPacket) register(self.handle_break_ack, AcknowledgePlayerDiggingPacket) register(self.handle_window, OpenWindowPacket) register(self.handle_window_confirmation, ClientWindowConfirmationPacket) register(self.handle_spawn_object, clientbound.play.SpawnObjectPacket) register(self.handle_entity_metadata, EntityMetadataPacket) register(self.handle_spawn_living, SpawnLivingEntityPacket) register(self.handle_entity_position, clientbound.play.EntityPositionDeltaPacket) register(self.handle_entity_position_rotation, EntityPositionRotationPacket) register(self.handle_destroy_entities, DestroyEntitiesPacket) #register(self.handle_entity_velocity, clientbound.play.EntityVelocityPacket) #register(self.handle_packet, Packet, early=True) self.g.chat.set_handler(self.handle_chat) def handle_join_game(self, packet): print('Connected.') print(packet) self.g.info = packet self.g.eid = packet.entity_id def handle_block_change(self, packet): if packet.block_state_id == blocks.SOUL_TORCH: try: self.g.goal = LPoint3f(x=packet.location[0], y=packet.location[1], z=packet.location[2]) print('new waypoint:', self.g.goal) start = time.time() solution = path.Pathfinder(self.g.chunks).astar(utils.pint(self.g.pos), utils.pint(self.g.goal)) if solution: solution = list(solution) self.g.path = solution self.g.job.state = self.g.job.stop print(len(solution)) print(solution) print(round(time.time() - start, 3), 'seconds') else: print('No path found') #say(connection, 'No path found') #g.y_v = 10.0 #g.y_a = -36.0 except BaseException as e: import traceback print(traceback.format_exc()) def handle_position_and_look(self, packet): print(packet) p = LPoint3f(x=packet.x, y=packet.y, z=packet.z) self.g.pos = p confirm_packet = serverbound.play.TeleportConfirmPacket() confirm_packet.teleport_id = packet.teleport_id self.g.connection.write_packet(confirm_packet) def handle_chat(self, message): source, text = message reply = None private = False if source == 'SYSTEM': self.g.command_lock = False return match1 = re.match(r'<(\w+)> (.*)', text) match2 = re.match(r'\[(\w+) -> me] (.*)', text) if match1: sender, text = match1.groups() elif match2: sender, text = match2.groups() private = True else: return if text.startswith('! '): text = text[2:] elif text.startswith('!'): text = text[1:] else: return if ' ' in text: command = text.split(' ', 1)[0] data = text.split(' ', 1)[1] else: command = text data = None if command == 'ping': reply = 'pong' if command == 'echo' and data: reply = data if command == 'respawn': packet = serverbound.play.ClientStatusPacket() packet.action_id = serverbound.play.ClientStatusPacket.RESPAWN self.g.connection.write_packet(packet) reply = 'ok' if command == 'pos': reply = str(utils.pint(self.g.pos))[1:-1] if command == 'afk': reply = '/afk' if command == 'error': reply = 'ok' raise if command == 'break': self.break_block(blocks.TEST_BLOCK) reply = 'ok' if command == 'gather' and data: if data == 'wood': self.g.job.state = self.g.job.gather_wood reply = 'ok' elif data == 'sand': self.g.job.state = self.g.job.gather_sand reply = 'ok' if reply: for i in self.g.inv.values(): print(i.item_id) if i.item_id in items.BED_IDS: break else: reply += ', I need a bed' if command == 'farm' and data: if data == 'wood': self.g.job.state = self.g.job.farm_wood reply = 'ok' if reply: for i in self.g.inv.values(): print(i.item_id) if i.item_id in items.BED_IDS: break else: reply += ', I need a bed' if command == 'stop': self.g.job.state = self.g.job.stop reply = 'ok' if command == 'inv': inv_list = [] for i in self.g.inv.values(): if i.present: inv_list.append('{}:{} x {}'.format(items.ITEM_NAMES[i.item_id], str(i.item_id), i.item_count)) result = '\n'.join(inv_list) print(result or 'Empty') if command == 'drop': self.drop_stack() if command == 'time': reply = str(self.g.time) if command == 'select' and data: item = int(data) if self.select_item([item]): reply = 'ok' else: reply = 'not found' if command == 'dump' and data: item = int(data) if self.has_item([item]): self.g.dumping = item reply = 'ok' else: reply = 'not found' if command == 'open': self.open_container(blocks.TEST_BLOCK) if command == 'close': if self.g.window: self.close_window() else: reply = 'nothing open' if command == 'click' and data: if self.g.window: slot, button, mode = [int(x) for x in data.split(' ')] try: item = self.g.window.contents[slot] except KeyError: item = Slot(present=False, item_id=None, item_count=None, nbt=None) print(item) self.click_window(slot, button, mode, item) else: reply = 'nothing open' if command == 'loaded': reply = str(self.g.chunks.get_loaded_area()) if command == 'gapple': self.g.job.state = self.g.job.find_gapple if data: self.g.job.find_gapple_states.count = int(data) reply = 'ok' if command == 'objects': for k, v in self.g.objects.items(): if data and v.item_id != int(data): continue print(str(k) + ':', v) if command == 'cache': self.g.job.state = self.g.job.cache_items reply = 'ok' if reply: print(reply) if private and not reply.startswith('/'): self.g.chat.send('/m ' + sender + ' ' + reply) else: self.g.chat.send(reply) def handle_time_update(self, packet): self.g.time = packet.time_of_day % 24000 def handle_set_slot(self, packet): g = self.g print(packet) if packet.window_id == 0: g.inv[packet.slot] = packet.slot_data elif g.window: g.window.contents[packet.slot] = packet.slot_data if packet.window_id >= 0 and not packet.slot_data.present: print('unlocking item lock') g.item_lock = False def break_block(self, location): bid = self.g.chunks.get_block_at(*location) if bid != 0: packet = PlayerDiggingPacket() packet.status = 0 packet.location = location packet.face = 1 self.g.connection.write_packet(packet) self.g.breaking = location self.g.break_time = time.time() + utils.break_time(bid) def break_finish(self): packet = PlayerDiggingPacket() packet.status = 2 packet.location = self.g.breaking packet.face = 1 self.g.connection.write_packet(packet) self.g.chunks.set_block_at(*self.g.breaking, 0) self.g.breaking = None def handle_break_animation(self, packet): print(packet) def handle_break_ack(self, packet): #print(packet) return def animate(self): packet = serverbound.play.AnimationPacket() packet.hand = packet.HAND_MAIN self.g.connection.write_packet(packet) def place_block(self, location, face): packet = serverbound.play.PlayerBlockPlacementPacket() packet.hand = 0 packet.location = location packet.face = face packet.x = 0.5 packet.y = 0.5 packet.z = 0.5 packet.inside_block = False self.g.connection.write_packet(packet) def pick(self, slot): packet = PickItemPacket() packet.slot_to_use = slot self.g.connection.write_packet(packet) def hold(self, slot): packet = HeldItemChangePacket() packet.slot = slot self.g.connection.write_packet(packet) def choose_slot(self, slot): if slot >= 36: slot -= 36 self.hold(slot) else: self.pick(slot) def has_item(self, items): # select the first match from items of inv for slot, item in self.g.inv.items(): if item.item_id in items: return True else: #for return False def select_item(self, items): # select the first match from items of inv for slot, item in self.g.inv.items(): if item.item_id in items: self.g.game.choose_slot(slot) return True else: #for return False def select_random_item(self, items): # select a random match from items of inv # this is random per item type # example: 5 stacks wood, 1 stack glass # -> still 50/50 chance between them matches = set() for slot, item in self.g.inv.items(): if item.item_id in items: matches.add(item.item_id) if matches: return self.select_item([random.choice(list(matches))]) else: return False def drop_stack(self): packet = PlayerDiggingPacket() packet.status = 3 packet.location = utils.pint(self.g.pos) packet.face = 1 self.g.connection.write_packet(packet) def open_container(self, location): bid = self.g.chunks.get_block_at(*location) # TODO: check if block is a chest?? self.place_block(location, BlockFace.TOP) def handle_window(self, packet): print(packet) self.g.window = Munch(data=packet, contents=dict(), count=0) def click_window(self, slot, button, mode, item): w = self.g.window packet = ClickWindowPacket() packet.window_id = w.data.window_id packet.slot = slot packet.button = button packet.action_number = w.count packet.mode = mode packet.clicked_item = item self.g.connection.write_packet(packet) print('<--', packet) w.count += 1 def close_window(self): packet = CloseWindowPacket() packet.window_id = self.g.window.data.window_id self.g.connection.write_packet(packet) self.g.window = None def handle_window_confirmation(self, packet): print(packet) packet2 = ServerWindowConfirmationPacket() packet2.window_id = packet.window_id packet2.action_number = packet.action_number packet2.accepted = packet.accepted self.g.connection.write_packet(packet2) def handle_spawn_object(self, packet): #return if packet.type_id != 37: return #print(packet) self.g.objects[packet.entity_id] = Munch( entity_id=packet.entity_id, x=packet.x, y=packet.y, z=packet.z, velocity_x=packet.velocity_x, velocity_y=packet.velocity_y, velocity_z=packet.velocity_z, ) def check_gapple(self, packet): if not self.g.job: return current_gapple_chest = self.g.job.find_gapple_states.current_chest if current_gapple_chest: for entry in packet.metadata: if entry.type != 6: continue if entry.value.item_id in items.GAPPLE_ID: self.g.chat.send('gapple found: ' + str(current_gapple_chest)[1:-1]) print('gapple found:', str(current_gapple_chest)[1:-1]) def handle_entity_metadata(self, packet): if not packet.metadata: return self.check_gapple(packet) obj = self.g.objects.get(packet.entity_id, None) if obj: for entry in packet.metadata: if entry.type != 6: continue obj.item_id = entry.value.item_id obj.item_count = entry.value.item_count def handle_spawn_living(self, packet): return print(packet) def handle_entity_position(self, packet): obj = self.g.objects.get(packet.entity_id, None) if obj: pass #obj.x += packet.delta_x #obj.y += packet.delta_y #obj.z += packet.delta_z def handle_entity_position_rotation(self, packet): obj = self.g.objects.get(packet.entity_id, None) if obj: print('object rotation found:', packet) raise def handle_entity_velocity(self, packet): obj = self.g.objects.get(packet.entity_id, None) if obj: print(packet) #obj.velocity_x = packet.velocity_x #obj.velocity_y = packet.velocity_y #obj.velocity_z = packet.velocity_z def handle_destroy_entities(self, packet): for eid in packet.entity_ids: if eid in self.g.objects: del self.g.objects[eid] def tick(self): if self.g.breaking: self.animate() if time.time() >= self.g.break_time - 2*utils.TICK: self.break_finish() if self.g.dumping and not self.g.item_lock: if self.select_item([self.g.dumping]): self.drop_stack() self.g.item_lock = True else: self.g.dumping = None