229 lines
8.5 KiB
Python
229 lines
8.5 KiB
Python
from typing import List, Tuple
|
|
import torch
|
|
from torch import LongTensor, nn, FloatTensor, BoolTensor
|
|
torch.set_grad_enabled(False)
|
|
|
|
from .dalle_bart_encoder_torch import GLUTorch, AttentionTorch
|
|
|
|
|
|
class DecoderCrossAttentionTorch(AttentionTorch):
|
|
def forward(
|
|
self,
|
|
decoder_state: FloatTensor,
|
|
encoder_state: FloatTensor,
|
|
attention_mask: BoolTensor
|
|
) -> FloatTensor:
|
|
keys = self.k_proj.forward(encoder_state)
|
|
values = self.v_proj.forward(encoder_state)
|
|
queries = self.q_proj.forward(decoder_state)
|
|
query_shape = queries.shape[:2] + (self.head_count, -1)
|
|
key_value_shape = keys.shape[:2] + (self.head_count, -1)
|
|
keys = keys.reshape(key_value_shape)
|
|
values = values.reshape(key_value_shape)
|
|
queries = queries.reshape(query_shape)
|
|
queries /= queries.shape[-1] ** 0.5
|
|
return super().forward(keys, values, queries, attention_mask)
|
|
|
|
|
|
class DecoderSelfAttentionTorch(AttentionTorch):
|
|
def forward(
|
|
self,
|
|
decoder_state: FloatTensor,
|
|
keys_values: FloatTensor,
|
|
attention_mask: BoolTensor,
|
|
token_mask: BoolTensor
|
|
) -> Tuple[FloatTensor, FloatTensor]:
|
|
batch_count = decoder_state.shape[0]
|
|
shape = (batch_count, 1) + keys_values.shape[2:]
|
|
keys = self.k_proj.forward(decoder_state).view(shape)
|
|
values = self.v_proj.forward(decoder_state).view(shape)
|
|
keys_values = torch.where(
|
|
token_mask[None, :, None, None],
|
|
torch.cat([keys, values]),
|
|
keys_values
|
|
)
|
|
queries = self.q_proj.forward(decoder_state).reshape(shape)
|
|
queries /= queries.shape[-1] ** 0.5
|
|
keys, values = keys_values[:batch_count], keys_values[batch_count:]
|
|
decoder_state = super().forward(keys, values, queries, attention_mask)
|
|
return decoder_state, keys_values
|
|
|
|
|
|
class DecoderLayerTorch(nn.Module):
|
|
def __init__(
|
|
self,
|
|
image_token_count: int,
|
|
head_count: int,
|
|
embed_count: int,
|
|
glu_embed_count: int
|
|
):
|
|
super().__init__()
|
|
self.image_token_count = image_token_count
|
|
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.self_attn = DecoderSelfAttentionTorch(head_count, embed_count)
|
|
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.encoder_attn = DecoderCrossAttentionTorch(head_count, embed_count)
|
|
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.glu = GLUTorch(embed_count, glu_embed_count)
|
|
|
|
self.token_indices = torch.arange(self.image_token_count)
|
|
if torch.cuda.is_available():
|
|
self.token_indices = self.token_indices.cuda()
|
|
|
|
def forward(
|
|
self,
|
|
decoder_state: FloatTensor,
|
|
encoder_state: FloatTensor,
|
|
keys_values_state: FloatTensor,
|
|
attention_mask: BoolTensor,
|
|
token_index: LongTensor
|
|
) -> Tuple[FloatTensor, FloatTensor]:
|
|
# Self Attention
|
|
residual = decoder_state
|
|
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
|
|
self_attn_mask = self.token_indices < token_index + 1
|
|
token_mask = self.token_indices == token_index
|
|
self_attn_mask = torch.stack([self_attn_mask] * decoder_state.shape[0])
|
|
decoder_state, keys_values_state = self.self_attn.forward(
|
|
decoder_state,
|
|
keys_values_state,
|
|
self_attn_mask,
|
|
token_mask
|
|
)
|
|
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
|
|
decoder_state = residual + decoder_state
|
|
|
|
# Cross Attention
|
|
residual = decoder_state
|
|
decoder_state = self.pre_encoder_attn_layer_norm.forward(decoder_state)
|
|
decoder_state = self.encoder_attn.forward(
|
|
decoder_state,
|
|
encoder_state,
|
|
attention_mask
|
|
)
|
|
decoder_state = self.encoder_attn_layer_norm.forward(decoder_state)
|
|
decoder_state = residual + decoder_state
|
|
|
|
# Feed forward
|
|
residual = decoder_state
|
|
decoder_state = self.glu.forward(decoder_state)
|
|
decoder_state = residual + decoder_state
|
|
|
|
return decoder_state, keys_values_state
|
|
|
|
|
|
class DalleBartDecoderTorch(nn.Module):
|
|
def __init__(
|
|
self,
|
|
image_vocab_size: int,
|
|
image_token_count: int,
|
|
sample_token_count: int,
|
|
embed_count: int,
|
|
attention_head_count: int,
|
|
glu_embed_count: int,
|
|
layer_count: int,
|
|
batch_count: int,
|
|
start_token: int,
|
|
is_verbose: bool
|
|
):
|
|
super().__init__()
|
|
self.is_verbose = is_verbose
|
|
self.layer_count = layer_count
|
|
self.sample_token_count = sample_token_count
|
|
self.condition_factor = 10.0
|
|
self.image_token_count = image_token_count
|
|
self.embed_tokens = nn.Embedding(image_vocab_size + 1, embed_count)
|
|
self.embed_positions = nn.Embedding(image_token_count, embed_count)
|
|
self.layers: List[DecoderLayerTorch] = nn.ModuleList([
|
|
DecoderLayerTorch(
|
|
image_token_count,
|
|
attention_head_count,
|
|
embed_count,
|
|
glu_embed_count
|
|
)
|
|
for _ in range(layer_count)
|
|
])
|
|
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
|
self.final_ln = nn.LayerNorm(embed_count)
|
|
self.lm_head = nn.Linear(embed_count, image_vocab_size + 1, bias=False)
|
|
self.keys_values_state_shape = (
|
|
layer_count * 2 * batch_count,
|
|
image_token_count,
|
|
attention_head_count,
|
|
embed_count // attention_head_count
|
|
)
|
|
self.zero_prob = torch.zeros([1])
|
|
self.token_indices = torch.arange(self.sample_token_count)
|
|
self.start_token = torch.tensor([start_token]).to(torch.long)
|
|
if torch.cuda.is_available():
|
|
self.zero_prob = self.zero_prob.cuda()
|
|
self.token_indices = self.token_indices.cuda()
|
|
self.start_token = self.start_token.cuda()
|
|
|
|
|
|
def decode_step(
|
|
self,
|
|
text_tokens: LongTensor,
|
|
encoder_state: FloatTensor,
|
|
keys_values_state: FloatTensor,
|
|
prev_token_and_index: LongTensor
|
|
) -> Tuple[LongTensor, FloatTensor]:
|
|
attention_mask = text_tokens.not_equal(1)
|
|
batch_count = encoder_state.shape[0]
|
|
prev_token = torch.cat([prev_token_and_index[:1]] * batch_count)
|
|
token_index = torch.cat([prev_token_and_index[1:]] * batch_count)
|
|
decoder_state = self.embed_tokens.forward(prev_token)
|
|
decoder_state += self.embed_positions.forward(token_index)
|
|
decoder_state = self.layernorm_embedding.forward(decoder_state)
|
|
decoder_state = decoder_state[:, None]
|
|
keys_values = []
|
|
for i, layer in enumerate(self.layers):
|
|
j1, j2 = i * 2 * batch_count, (i + 1) * 2 * batch_count
|
|
decoder_state, keys_values_layer = layer.forward(
|
|
decoder_state,
|
|
encoder_state,
|
|
keys_values_state[j1:j2],
|
|
attention_mask,
|
|
token_index[:1]
|
|
)
|
|
keys_values.append(keys_values_layer)
|
|
keys_values = torch.cat(keys_values, dim=0)
|
|
decoder_state = self.final_ln(decoder_state)
|
|
logits = self.lm_head(decoder_state)
|
|
a = self.condition_factor
|
|
logits: FloatTensor = a * logits[0, -1] + (1 - a) * logits[1, -1]
|
|
|
|
top_logits = logits.sort(descending=True)[0][:50]
|
|
probs = torch.where(
|
|
logits < top_logits[-1],
|
|
self.zero_prob,
|
|
torch.exp(logits - top_logits[0])
|
|
)
|
|
return probs, keys_values
|
|
|
|
|
|
def forward(
|
|
self,
|
|
text_tokens: LongTensor,
|
|
encoder_state: FloatTensor
|
|
) -> LongTensor:
|
|
image_tokens: List[LongTensor] = []
|
|
keys_values_state = torch.zeros(self.keys_values_state_shape)
|
|
if torch.cuda.is_available():
|
|
keys_values_state = keys_values_state.cuda()
|
|
image_token = self.start_token
|
|
|
|
for i in range(self.sample_token_count):
|
|
token_index = self.token_indices[i:i+1]
|
|
probs, keys_values_state = self.decode_step(
|
|
text_tokens = text_tokens,
|
|
encoder_state = encoder_state,
|
|
keys_values_state = keys_values_state,
|
|
prev_token_and_index = torch.cat([image_token, token_index])
|
|
)
|
|
|
|
image_token = torch.multinomial(probs, 1)
|
|
image_tokens += [image_token]
|
|
|
|
return torch.cat(image_tokens) |