min-dalle-test/replicate_predictor.py
2022-07-17 15:29:23 -04:00

62 lines
2.0 KiB
Python

from min_dalle import MinDalle
import tempfile
import torch, torch.backends.cudnn
from typing import Iterator
from cog import BasePredictor, Path, Input
torch.backends.cudnn.deterministic = False
class ReplicatePredictor(BasePredictor):
def setup(self):
self.model = MinDalle(
is_mega=True,
is_reusable=True,
dtype=torch.float32,
device='cuda'
)
def predict(
self,
text: str = Input(default='Dali painting of WALL·E'),
save_as_png: bool = Input(default=False),
progressive_outputs: bool = Input(default=True),
seamless: bool = Input(default=False),
grid_size: int = Input(ge=1, le=9, default=5),
temperature: float = Input(
ge=0.01,
le=16,
default=4
),
top_k: int = Input(
choices=[2 ** i for i in range(15)],
default=64,
description='Advanced Setting, see Readme below if interested.'
),
supercondition_factor: int = Input(
choices=[2 ** i for i in range(2, 7)],
default=16,
description='Advanced Setting, see Readme below if interested.'
)
) -> Iterator[Path]:
image_stream = self.model.generate_image_stream(
text = text,
seed = -1,
grid_size = grid_size,
progressive_outputs = progressive_outputs,
is_seamless = seamless,
temperature = temperature,
supercondition_factor = float(supercondition_factor),
top_k = top_k,
is_verbose = True
)
i = 0
path = Path(tempfile.mkdtemp())
for image in image_stream:
i += 1
is_final = i == 8 if progressive_outputs else True
ext = 'png' if is_final and save_as_png else 'jpg'
image_path = path / 'min-dalle-iter-{}.{}'.format(i, ext)
image.save(str(image_path))
yield image_path