min-dalle-test/min_dalle/models/dalle_bart_decoder.py
2022-07-15 21:21:16 -04:00

179 lines
6.6 KiB
Python

from typing import Tuple, List
import torch
from torch import nn, LongTensor, FloatTensor, BoolTensor
from .dalle_bart_encoder import GLU, AttentionBase
IMAGE_TOKEN_COUNT = 256
class DecoderCrossAttention(AttentionBase):
def forward(
self,
decoder_state: FloatTensor,
encoder_state: FloatTensor,
attention_mask: BoolTensor
) -> FloatTensor:
keys = self.k_proj.forward(encoder_state)
values = self.v_proj.forward(encoder_state)
queries = self.q_proj.forward(decoder_state)
return super().forward(keys, values, queries, attention_mask)
class DecoderSelfAttention(AttentionBase):
def __init__(self, head_count: int, embed_count: int):
super().__init__(head_count, embed_count)
def forward(
self,
decoder_state: FloatTensor,
attention_state: FloatTensor,
attn_mask: BoolTensor,
token_index: LongTensor
) -> Tuple[FloatTensor, FloatTensor]:
keys = self.k_proj.forward(decoder_state)
values = self.v_proj.forward(decoder_state)
queries = self.q_proj.forward(decoder_state)
attn_state_new = torch.cat([keys, values]).to(attention_state.dtype)
attention_state[:, token_index] = attn_state_new
batch_count = decoder_state.shape[0]
keys = attention_state[:batch_count]
values = attention_state[batch_count:]
decoder_state = super().forward(keys, values, queries, attn_mask)
return decoder_state, attention_state
class DecoderLayer(nn.Module):
def __init__(
self,
head_count: int,
embed_count: int,
glu_embed_count: int,
device: str
):
super().__init__()
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
self.self_attn = DecoderSelfAttention(head_count, embed_count)
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
self.glu = GLU(embed_count, glu_embed_count)
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
def forward(
self,
decoder_state: FloatTensor,
encoder_state: FloatTensor,
attention_state: FloatTensor,
attention_mask: BoolTensor,
token_index: LongTensor
) -> Tuple[FloatTensor, FloatTensor]:
# Self Attention
self_attn_mask = self.token_indices < token_index + 1
self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
residual = decoder_state
decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
decoder_state, attention_state = self.self_attn.forward(
decoder_state=decoder_state,
attention_state=attention_state,
attn_mask=self_attn_mask,
token_index=token_index
)
decoder_state = self.self_attn_layer_norm.forward(decoder_state)
decoder_state = residual + decoder_state
# Cross Attention
residual = decoder_state
decoder_state = self.pre_encoder_attn_layer_norm.forward(decoder_state)
decoder_state = self.encoder_attn.forward(
decoder_state=decoder_state,
encoder_state=encoder_state,
attention_mask=attention_mask
)
decoder_state = self.encoder_attn_layer_norm.forward(decoder_state)
decoder_state = residual + decoder_state
# Feed forward
residual = decoder_state
decoder_state = self.glu.forward(decoder_state)
decoder_state = residual + decoder_state
return decoder_state, attention_state
class DalleBartDecoder(nn.Module):
def __init__(
self,
image_vocab_count: int,
embed_count: int,
attention_head_count: int,
glu_embed_count: int,
layer_count: int,
device: str
):
super().__init__()
self.layer_count = layer_count
self.embed_count = embed_count
self.image_vocab_count = image_vocab_count
self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
self.layers: List[DecoderLayer] = nn.ModuleList([
DecoderLayer(
head_count=attention_head_count,
embed_count=embed_count,
glu_embed_count=glu_embed_count,
device=device
)
for _ in range(layer_count)
])
self.layernorm_embedding = nn.LayerNorm(embed_count)
self.final_ln = nn.LayerNorm(embed_count)
self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)
def forward(
self,
settings: FloatTensor,
attention_mask: BoolTensor,
encoder_state: FloatTensor,
attention_state: FloatTensor,
prev_tokens: LongTensor,
token_index: LongTensor
) -> Tuple[LongTensor, FloatTensor]:
image_count = encoder_state.shape[0] // 2
token_index_batched = token_index[[0] * image_count * 2]
prev_tokens = prev_tokens[list(range(image_count)) * 2]
prev_tokens.clamp_(0, self.image_vocab_count)
decoder_state = self.embed_tokens.forward(prev_tokens)
decoder_state += self.embed_positions.forward(token_index_batched)
decoder_state = self.layernorm_embedding.forward(decoder_state)
decoder_state = decoder_state[:, None]
for i in range(self.layer_count):
decoder_state, attention_state[i] = self.layers[i].forward(
decoder_state,
encoder_state,
attention_state[i],
attention_mask,
token_index
)
decoder_state = self.final_ln(decoder_state)
logits = self.lm_head(decoder_state)
temperature = settings[[0]]
top_k = settings[[1]].to(torch.long)
supercondition_factor = settings[[2]]
logits = logits[:, -1, : 2 ** 14]
logits: FloatTensor = (
logits[:image_count] * (1 - supercondition_factor) +
logits[image_count:] * supercondition_factor
)
logits_sorted, _ = logits.sort(descending=True)
is_kept = logits >= logits_sorted[:, top_k - 1]
logits -= logits_sorted[:, [0]]
logits /= temperature
logits.exp_()
logits *= is_kept.to(torch.float32)
image_tokens = torch.multinomial(logits, 1)[:, 0]
return image_tokens, attention_state