min-dalle-test/cogrun.py
2022-07-04 23:29:48 -04:00

55 lines
1.7 KiB
Python

from contextlib import suppress
from min_dalle import MinDalle
import tempfile
from typing import Iterator
from math import log2
from cog import BasePredictor, Path, Input
class Predictor(BasePredictor):
def setup(self):
self.model = MinDalle(is_mega=True)
def predict(
self,
text: str = Input(
description='Text',
default='Dali painting of WALL·E'
),
grid_size: int = Input(
description='Size of the image grid',
ge=1,
le=4,
default=4
),
seed: int = Input(
description='Set the seed to a positive number for reproducible results',
default=-1
),
intermediate_image_count: int = Input(
description='Set the number of intermediate images to show while running',
choices=[1, 2, 4, 8, 16],
default=4
),
supercondition_factor: int = Input(
description='Lower results in a wider variety of images but less agreement with the text',
choices=[2, 4, 8, 16, 32, 64],
default=8
),
) -> Iterator[Path]:
image_stream = self.model.generate_image_stream(
text,
seed,
grid_size=grid_size,
log2_mid_count=log2(intermediate_image_count),
log2_supercondition_factor=log2(supercondition_factor),
is_verbose=True
)
iter = 0
path = Path(tempfile.mkdtemp())
for image in image_stream:
iter += 1
image_path = path / 'min-dalle-iter-{}.jpg'.format(iter)
image.save(str(image_path))
yield image_path