61 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from min_dalle import MinDalle
 | 
						|
import tempfile
 | 
						|
import torch, torch.backends.cudnn
 | 
						|
from typing import Iterator
 | 
						|
from cog import BasePredictor, Path, Input
 | 
						|
 | 
						|
torch.backends.cudnn.deterministic = False
 | 
						|
 | 
						|
 | 
						|
class ReplicatePredictor(BasePredictor):
 | 
						|
    def setup(self):
 | 
						|
        self.model = MinDalle(is_mega=True, is_reusable=True)
 | 
						|
 | 
						|
    def predict(
 | 
						|
        self,
 | 
						|
        text: str = Input(
 | 
						|
            description='For long prompts, only the first 64 tokens will be used to generate the image.',
 | 
						|
            default='Dali painting of WALL·E'
 | 
						|
        ),
 | 
						|
        intermediate_outputs: bool = Input(
 | 
						|
            description='Whether to show intermediate outputs while running.  This adds less than a second to the run time.',
 | 
						|
            default=True
 | 
						|
        ),
 | 
						|
        grid_size: int = Input(
 | 
						|
            description='Size of the image grid.  5x5 takes around 16 seconds, 8x8 takes around 36 seconds',
 | 
						|
            ge=1,
 | 
						|
            le=8,
 | 
						|
            default=4
 | 
						|
        ),
 | 
						|
        log2_supercondition_factor: int = Input(
 | 
						|
            description='Higher values result in better agreement with the text but a narrower variety of generated images',
 | 
						|
            ge=1,
 | 
						|
            le=6,
 | 
						|
            default=4
 | 
						|
        ),
 | 
						|
    ) -> Iterator[Path]:
 | 
						|
        try: 
 | 
						|
            seed = -1
 | 
						|
            log2_mid_count = 3 if intermediate_outputs else 0
 | 
						|
            image_stream = self.model.generate_image_stream(
 | 
						|
                text,
 | 
						|
                seed,
 | 
						|
                grid_size=grid_size,
 | 
						|
                log2_mid_count=log2_mid_count,
 | 
						|
                log2_supercondition_factor=log2_supercondition_factor,
 | 
						|
                is_verbose=True
 | 
						|
            )
 | 
						|
 | 
						|
            iter = 0
 | 
						|
            path = Path(tempfile.mkdtemp())
 | 
						|
            for image in image_stream:
 | 
						|
                iter += 1
 | 
						|
                image_path = path / 'min-dalle-iter-{}.jpg'.format(iter)
 | 
						|
                image.save(str(image_path))
 | 
						|
                yield image_path
 | 
						|
        except:
 | 
						|
            print("An error occured, deleting model")
 | 
						|
            del self.model
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
            self.setup()
 | 
						|
            raise Exception("There was an error, please try again") |