150 lines
5.6 KiB
Python
150 lines
5.6 KiB
Python
from typing import List
|
|
import torch
|
|
from torch import nn, BoolTensor, FloatTensor, LongTensor
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
class GLUTorch(nn.Module):
|
|
def __init__(self, count_in_out, count_middle):
|
|
super().__init__()
|
|
self.gelu = nn.GELU()
|
|
self.ln0 = nn.LayerNorm(count_in_out)
|
|
self.ln1 = nn.LayerNorm(count_middle)
|
|
self.fc0 = nn.Linear(count_in_out, count_middle, bias=False)
|
|
self.fc1 = nn.Linear(count_in_out, count_middle, bias=False)
|
|
self.fc2 = nn.Linear(count_middle, count_in_out, bias=False)
|
|
|
|
def forward(self, z: FloatTensor) -> FloatTensor:
|
|
z = self.ln0.forward(z)
|
|
w = self.fc0.forward(z)
|
|
w = self.gelu.forward(w)
|
|
v = self.fc1.forward(z)
|
|
z = self.ln1.forward(w * v)
|
|
z = self.fc2.forward(z)
|
|
return z
|
|
|
|
|
|
class AttentionTorch(nn.Module):
|
|
def __init__(self, head_count: int, embed_count: int):
|
|
super().__init__()
|
|
self.head_count = head_count
|
|
self.embed_count = embed_count
|
|
|
|
self.k_proj = nn.Linear(embed_count, embed_count, bias=False)
|
|
self.v_proj = nn.Linear(embed_count, embed_count, bias=False)
|
|
self.q_proj = nn.Linear(embed_count, embed_count, bias=False)
|
|
self.out_proj = nn.Linear(embed_count, embed_count, bias=False)
|
|
self.one = torch.ones((1, 1))
|
|
if torch.cuda.is_available(): self.one = self.one.cuda()
|
|
|
|
def forward(
|
|
self,
|
|
keys: FloatTensor,
|
|
values: FloatTensor,
|
|
queries: FloatTensor,
|
|
attention_mask: BoolTensor
|
|
) -> FloatTensor:
|
|
keys = keys.reshape(keys.shape[:2] + (self.head_count, -1))
|
|
values = values.reshape(values.shape[:2] + (self.head_count, -1))
|
|
queries = queries.reshape(queries.shape[:2] + (self.head_count, -1))
|
|
queries /= queries.shape[-1] ** 0.5
|
|
|
|
attention_bias = torch.where(
|
|
attention_mask,
|
|
self.one * 0,
|
|
self.one * (-torch.inf),
|
|
)
|
|
attention_weights: FloatTensor = torch.einsum(
|
|
'bqhc,bkhc->bhqk',
|
|
queries,
|
|
keys
|
|
)
|
|
attention_weights += attention_bias[:, None, None, :]
|
|
attention_weights = torch.softmax(attention_weights, -1)
|
|
attention_output: FloatTensor = torch.einsum(
|
|
"bhqk,bkhc->bqhc",
|
|
attention_weights,
|
|
values
|
|
)
|
|
shape = attention_output.shape[:2] + (self.embed_count,)
|
|
attention_output = attention_output.reshape(shape)
|
|
attention_output = self.out_proj.forward(attention_output)
|
|
return attention_output
|
|
|
|
|
|
class EncoderSelfAttentionTorch(AttentionTorch):
|
|
def forward(
|
|
self,
|
|
encoder_state: FloatTensor,
|
|
attention_mask: BoolTensor
|
|
) -> FloatTensor:
|
|
keys = self.k_proj.forward(encoder_state)
|
|
values = self.v_proj.forward(encoder_state)
|
|
queries = self.q_proj.forward(encoder_state)
|
|
return super().forward(keys, values, queries, attention_mask)
|
|
|
|
|
|
class EncoderLayerTorch(nn.Module):
|
|
def __init__(self, embed_count: int, head_count: int, glu_embed_count: int):
|
|
super().__init__()
|
|
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.self_attn = EncoderSelfAttentionTorch(head_count, embed_count)
|
|
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
|
|
self.glu = GLUTorch(embed_count, glu_embed_count)
|
|
|
|
def forward(
|
|
self,
|
|
encoder_state: FloatTensor,
|
|
attention_mask: BoolTensor
|
|
) -> FloatTensor:
|
|
residual = encoder_state
|
|
encoder_state = self.pre_self_attn_layer_norm.forward(encoder_state)
|
|
encoder_state = self.self_attn.forward(encoder_state, attention_mask)
|
|
encoder_state = self.self_attn_layer_norm.forward(encoder_state)
|
|
encoder_state = residual + encoder_state
|
|
residual = encoder_state
|
|
encoder_state = self.glu.forward(encoder_state)
|
|
encoder_state = residual + encoder_state
|
|
return encoder_state
|
|
|
|
|
|
class DalleBartEncoderTorch(nn.Module):
|
|
def __init__(
|
|
self,
|
|
layer_count: int,
|
|
embed_count: int,
|
|
attention_head_count: int,
|
|
text_vocab_count: int,
|
|
text_token_count: int,
|
|
glu_embed_count: int
|
|
):
|
|
super().__init__()
|
|
self.embed_tokens = nn.Embedding(text_vocab_count, embed_count)
|
|
self.embed_positions = nn.Embedding(text_token_count, embed_count)
|
|
self.layers: List[EncoderLayerTorch] = nn.ModuleList([
|
|
EncoderLayerTorch(
|
|
embed_count = embed_count,
|
|
head_count = attention_head_count,
|
|
glu_embed_count = glu_embed_count
|
|
)
|
|
for _ in range(layer_count)
|
|
])
|
|
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
|
self.final_ln = nn.LayerNorm(embed_count)
|
|
self.token_indices = torch.arange(text_token_count).to(torch.long)
|
|
if torch.cuda.is_available():
|
|
self.token_indices = self.token_indices.cuda()
|
|
|
|
def forward(self, text_tokens: LongTensor) -> FloatTensor:
|
|
attention_mask = text_tokens.not_equal(1)
|
|
batch_count = text_tokens.shape[0]
|
|
pose_tokens = torch.stack([self.token_indices] * batch_count)
|
|
encoder_state = (
|
|
self.embed_tokens.forward(text_tokens) +
|
|
self.embed_positions.forward(pose_tokens)
|
|
)
|
|
encoder_state = self.layernorm_embedding.forward(encoder_state)
|
|
for layer in self.layers:
|
|
encoder_state = layer.forward(encoder_state, attention_mask)
|
|
encoder_state = self.final_ln.forward(encoder_state)
|
|
return encoder_state |