131 lines
5.0 KiB
Python
131 lines
5.0 KiB
Python
import os
|
|
from PIL import Image
|
|
from typing import Dict
|
|
import numpy
|
|
from torch import LongTensor
|
|
import torch
|
|
import json
|
|
torch.set_grad_enabled(False)
|
|
torch.set_num_threads(os.cpu_count())
|
|
|
|
from .text_tokenizer import TextTokenizer
|
|
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
|
|
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
|
|
from .models.vqgan_detokenizer import VQGanDetokenizer
|
|
|
|
|
|
class MinDalleTorch:
|
|
def __init__(
|
|
self,
|
|
is_mega: bool,
|
|
is_reusable: bool = True,
|
|
token_count: int = 256
|
|
):
|
|
print("initializing MinDalleTorch")
|
|
self.is_mega = is_mega
|
|
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
|
self.model_path = os.path.join('pretrained', model_name)
|
|
|
|
print("reading files from {}".format(self.model_path))
|
|
vocab_path = os.path.join(self.model_path, 'vocab.json')
|
|
merges_path = os.path.join(self.model_path, 'merges.txt')
|
|
|
|
with open(vocab_path, 'r', encoding='utf8') as f:
|
|
vocab = json.load(f)
|
|
with open(merges_path, 'r', encoding='utf8') as f:
|
|
merges = f.read().split("\n")[1:-1]
|
|
|
|
self.tokenizer = TextTokenizer(vocab, merges)
|
|
self.is_reusable = is_reusable
|
|
self.token_count = token_count
|
|
|
|
self.encoder_params_path = os.path.join(self.model_path, 'encoder.pt')
|
|
self.decoder_params_path = os.path.join(self.model_path, 'decoder.pt')
|
|
self.detoker_params_path = os.path.join('pretrained', 'vqgan', 'detoker.pt')
|
|
|
|
if is_reusable:
|
|
self.init_encoder()
|
|
self.init_decoder()
|
|
self.init_detokenizer()
|
|
|
|
|
|
def init_encoder(self):
|
|
print("initializing DalleBartEncoderTorch")
|
|
self.encoder = DalleBartEncoderTorch(
|
|
attention_head_count = 32 if self.is_mega else 16,
|
|
embed_count = 2048 if self.is_mega else 1024,
|
|
glu_embed_count = 4096 if self.is_mega else 2730,
|
|
text_token_count = 64,
|
|
text_vocab_count = 50272 if self.is_mega else 50264,
|
|
layer_count = 24 if self.is_mega else 12
|
|
)
|
|
params = torch.load(self.encoder_params_path)
|
|
self.encoder.load_state_dict(params, strict=False)
|
|
del params
|
|
if torch.cuda.is_available(): self.encoder = self.encoder.cuda()
|
|
|
|
|
|
def init_decoder(self):
|
|
print("initializing DalleBartDecoderTorch")
|
|
self.decoder = DalleBartDecoderTorch(
|
|
sample_token_count = self.token_count,
|
|
image_token_count = 256,
|
|
image_vocab_count = 16415 if self.is_mega else 16384,
|
|
attention_head_count = 32 if self.is_mega else 16,
|
|
embed_count = 2048 if self.is_mega else 1024,
|
|
glu_embed_count = 4096 if self.is_mega else 2730,
|
|
layer_count = 24 if self.is_mega else 12,
|
|
start_token = 16415 if self.is_mega else 16384,
|
|
batch_count = 2
|
|
)
|
|
params = torch.load(self.decoder_params_path)
|
|
self.decoder.load_state_dict(params, strict=False)
|
|
del params
|
|
if torch.cuda.is_available(): self.decoder = self.decoder.cuda()
|
|
|
|
|
|
def init_detokenizer(self):
|
|
print("initializing VQGanDetokenizer")
|
|
self.detokenizer = VQGanDetokenizer()
|
|
params = torch.load(self.detoker_params_path)
|
|
self.detokenizer.load_state_dict(params)
|
|
del params
|
|
if torch.cuda.is_available(): self.detokenizer = self.detokenizer.cuda()
|
|
|
|
|
|
def tokenize_text(self, text: str) -> numpy.ndarray:
|
|
print("tokenizing text")
|
|
tokens = self.tokenizer.tokenize(text)
|
|
print("text tokens", tokens)
|
|
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
|
|
text_tokens[0, :2] = [tokens[0], tokens[-1]]
|
|
text_tokens[1, :len(tokens)] = tokens
|
|
return text_tokens
|
|
|
|
|
|
def generate_image_tokens(self, text: str, seed: int) -> LongTensor:
|
|
text_tokens = self.tokenize_text(text)
|
|
text_tokens = torch.tensor(text_tokens).to(torch.long)
|
|
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
|
|
|
if not self.is_reusable: self.init_encoder()
|
|
print("encoding text tokens")
|
|
encoder_state = self.encoder.forward(text_tokens)
|
|
if not self.is_reusable: del self.encoder
|
|
|
|
if not self.is_reusable: self.init_decoder()
|
|
print("sampling image tokens")
|
|
torch.manual_seed(seed)
|
|
image_tokens = self.decoder.forward(text_tokens, encoder_state)
|
|
if not self.is_reusable: del self.decoder
|
|
return image_tokens
|
|
|
|
|
|
def generate_image(self, text: str, seed: int) -> Image.Image:
|
|
image_tokens = self.generate_image_tokens(text, seed)
|
|
if not self.is_reusable: self.init_detokenizer()
|
|
print("detokenizing image")
|
|
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
|
if not self.is_reusable: del self.detokenizer
|
|
image = Image.fromarray(image.to('cpu').detach().numpy())
|
|
return image |