46 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			46 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from min_dalle import MinDalle
 | 
						|
import tempfile
 | 
						|
import torch, torch.backends.cudnn
 | 
						|
from typing import Iterator
 | 
						|
from cog import BasePredictor, Path, Input
 | 
						|
 | 
						|
torch.backends.cudnn.deterministic = False
 | 
						|
 | 
						|
 | 
						|
class ReplicatePredictor(BasePredictor):
 | 
						|
    def setup(self):
 | 
						|
        self.model = MinDalle(
 | 
						|
            is_mega=True, 
 | 
						|
            is_reusable=True, 
 | 
						|
            dtype=torch.float32
 | 
						|
        )
 | 
						|
 | 
						|
    def predict(
 | 
						|
        self,
 | 
						|
        text: str = Input(default='Dali painting of WALL·E'),
 | 
						|
        intermediate_outputs: bool = Input(default=True),
 | 
						|
        grid_size: int = Input(ge=1, le=9, default=5),
 | 
						|
        log2_temperature: float = Input(ge=-3, le=3, default=0.0),
 | 
						|
        log2_top_k: int = Input(ge=0, le=14, default=7),
 | 
						|
        log2_supercondition_factor: float = Input(ge=2, le=6, default=4)
 | 
						|
    ) -> Iterator[Path]:
 | 
						|
        log2_mid_count = 3 if intermediate_outputs else 0
 | 
						|
        image_stream = self.model.generate_image_stream(
 | 
						|
            text = text,
 | 
						|
            seed = -1,
 | 
						|
            grid_size = grid_size,
 | 
						|
            log2_mid_count = log2_mid_count,
 | 
						|
            temperature = 2 ** log2_temperature,
 | 
						|
            supercondition_factor = 2 ** log2_supercondition_factor,
 | 
						|
            top_k = 2 ** log2_top_k,
 | 
						|
            is_verbose = True
 | 
						|
        )
 | 
						|
 | 
						|
        i = 0
 | 
						|
        path = Path(tempfile.mkdtemp())
 | 
						|
        for image in image_stream:
 | 
						|
            i += 1
 | 
						|
            ext = 'png' if i == 2 ** log2_mid_count else 'jpg'
 | 
						|
            image_path = path / 'min-dalle-iter-{}.{}'.format(i, ext)
 | 
						|
            image.save(str(image_path))
 | 
						|
            yield image_path |