min-dalle-test/replicate_predictor.py
2022-07-12 11:20:37 -04:00

46 lines
1.5 KiB
Python

from min_dalle import MinDalle
import tempfile
import torch, torch.backends.cudnn
from typing import Iterator
from cog import BasePredictor, Path, Input
torch.backends.cudnn.deterministic = False
class ReplicatePredictor(BasePredictor):
def setup(self):
self.model = MinDalle(
is_mega=True,
is_reusable=True,
dtype=torch.float32
)
def predict(
self,
text: str = Input(default='Dali painting of WALL·E'),
intermediate_outputs: bool = Input(default=True),
grid_size: int = Input(ge=1, le=9, default=5),
log2_temperature: float = Input(ge=-3, le=3, default=0.0),
log2_top_k: int = Input(ge=0, le=14, default=7),
log2_supercondition_factor: float = Input(ge=2, le=6, default=4)
) -> Iterator[Path]:
log2_mid_count = 3 if intermediate_outputs else 0
image_stream = self.model.generate_image_stream(
text = text,
seed = -1,
grid_size = grid_size,
log2_mid_count = log2_mid_count,
temperature = 2 ** log2_temperature,
supercondition_factor = 2 ** log2_supercondition_factor,
top_k = 2 ** log2_top_k,
is_verbose = True
)
i = 0
path = Path(tempfile.mkdtemp())
for image in image_stream:
i += 1
ext = 'png' if i == 2 ** log2_mid_count else 'jpg'
image_path = path / 'min-dalle-iter-{}.{}'.format(i, ext)
image.save(str(image_path))
yield image_path