117 lines
3.5 KiB
Python
117 lines
3.5 KiB
Python
import numpy
|
|
from typing import Dict
|
|
from torch import LongTensor, FloatTensor
|
|
import torch
|
|
torch.set_grad_enabled(False)
|
|
|
|
from .models.vqgan_detokenizer import VQGanDetokenizer
|
|
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
|
|
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
|
|
|
|
from .load_params import (
|
|
load_vqgan_torch_params,
|
|
convert_dalle_bart_torch_from_flax_params
|
|
)
|
|
|
|
|
|
def encode_torch(
|
|
text_tokens: LongTensor,
|
|
config: dict,
|
|
params: dict
|
|
) -> FloatTensor:
|
|
print("loading torch encoder")
|
|
encoder = DalleBartEncoderTorch(
|
|
layer_count = config['encoder_layers'],
|
|
embed_count = config['d_model'],
|
|
attention_head_count = config['encoder_attention_heads'],
|
|
text_vocab_count = config['encoder_vocab_size'],
|
|
text_token_count = config['max_text_length'],
|
|
glu_embed_count = config['encoder_ffn_dim']
|
|
)
|
|
encoder_params = convert_dalle_bart_torch_from_flax_params(
|
|
params.pop('encoder'),
|
|
layer_count=config['encoder_layers'],
|
|
is_encoder=True
|
|
)
|
|
encoder.load_state_dict(encoder_params, strict=False)
|
|
del encoder_params
|
|
if torch.cuda.is_available(): encoder = encoder.cuda()
|
|
|
|
print("encoding text tokens")
|
|
encoder_state = encoder(text_tokens)
|
|
del encoder
|
|
return encoder_state
|
|
|
|
|
|
def decode_torch(
|
|
text_tokens: LongTensor,
|
|
encoder_state: FloatTensor,
|
|
config: dict,
|
|
seed: int,
|
|
params: dict,
|
|
image_token_count: int
|
|
) -> LongTensor:
|
|
print("loading torch decoder")
|
|
decoder = DalleBartDecoderTorch(
|
|
image_vocab_size = config['image_vocab_size'],
|
|
image_token_count = config['image_length'],
|
|
sample_token_count = image_token_count,
|
|
embed_count = config['d_model'],
|
|
attention_head_count = config['decoder_attention_heads'],
|
|
glu_embed_count = config['decoder_ffn_dim'],
|
|
layer_count = config['decoder_layers'],
|
|
batch_count = 2,
|
|
start_token = config['decoder_start_token_id'],
|
|
is_verbose = True
|
|
)
|
|
decoder_params = convert_dalle_bart_torch_from_flax_params(
|
|
params.pop('decoder'),
|
|
layer_count=config['decoder_layers'],
|
|
is_encoder=False
|
|
)
|
|
decoder.load_state_dict(decoder_params, strict=False)
|
|
del decoder_params
|
|
if torch.cuda.is_available(): decoder = decoder.cuda()
|
|
|
|
print("sampling image tokens")
|
|
torch.manual_seed(seed)
|
|
image_tokens = decoder.forward(text_tokens, encoder_state)
|
|
return image_tokens
|
|
|
|
|
|
def generate_image_tokens_torch(
|
|
text_tokens: numpy.ndarray,
|
|
seed: int,
|
|
config: dict,
|
|
params: dict,
|
|
image_token_count: int
|
|
) -> LongTensor:
|
|
text_tokens = torch.tensor(text_tokens).to(torch.long)
|
|
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
|
encoder_state = encode_torch(
|
|
text_tokens,
|
|
config,
|
|
params
|
|
)
|
|
image_tokens = decode_torch(
|
|
text_tokens,
|
|
encoder_state,
|
|
config,
|
|
seed,
|
|
params,
|
|
image_token_count
|
|
)
|
|
return image_tokens
|
|
|
|
|
|
def detokenize_torch(image_tokens: LongTensor, is_torch: bool) -> numpy.ndarray:
|
|
print("detokenizing image")
|
|
model_path = './pretrained/vqgan'
|
|
params = load_vqgan_torch_params(model_path)
|
|
detokenizer = VQGanDetokenizer()
|
|
detokenizer.load_state_dict(params)
|
|
if torch.cuda.is_available() and is_torch: detokenizer = detokenizer.cuda()
|
|
image = detokenizer.forward(image_tokens).to(torch.uint8)
|
|
del detokenizer, params
|
|
return image.to('cpu').detach().numpy()
|
|
|