126 lines
3.4 KiB
Python
126 lines
3.4 KiB
Python
import jax
|
|
from jax import numpy as jnp
|
|
import numpy
|
|
import argparse
|
|
|
|
from min_dalle.load_params import load_dalle_bart_flax_params
|
|
from min_dalle.image_from_text import (
|
|
load_dalle_bart_metadata,
|
|
tokenize,
|
|
detokenize_torch,
|
|
save_image,
|
|
ascii_from_image
|
|
)
|
|
from min_dalle.models.dalle_bart_encoder_flax import DalleBartEncoderFlax
|
|
from min_dalle.models.dalle_bart_decoder_flax import DalleBartDecoderFlax
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'--text',
|
|
help='text to generate image from',
|
|
type=str
|
|
)
|
|
parser.add_argument(
|
|
'--seed',
|
|
help='random seed',
|
|
type=int,
|
|
default=0
|
|
)
|
|
parser.add_argument(
|
|
'--image_path',
|
|
help='generated image path',
|
|
type=str,
|
|
default='generated.png'
|
|
)
|
|
parser.add_argument(
|
|
'--dalle_bart_path',
|
|
help='pretraied dalle bart path',
|
|
type=str,
|
|
default='./pretrained/dalle_bart_mini'
|
|
)
|
|
parser.add_argument(
|
|
'--vqgan_path',
|
|
help='pretraied vqgan path',
|
|
type=str,
|
|
default='./pretrained/vqgan'
|
|
)
|
|
|
|
|
|
def encode_flax(
|
|
text_tokens: numpy.ndarray,
|
|
config: dict,
|
|
params: dict
|
|
) -> jnp.ndarray:
|
|
print("loading flax encoder")
|
|
encoder: DalleBartEncoderFlax = DalleBartEncoderFlax(
|
|
attention_head_count = config['encoder_attention_heads'],
|
|
embed_count = config['d_model'],
|
|
glu_embed_count = config['encoder_ffn_dim'],
|
|
text_token_count = config['max_text_length'],
|
|
text_vocab_count = config['encoder_vocab_size'],
|
|
layer_count = config['encoder_layers']
|
|
).bind({'params': params.pop('encoder')})
|
|
|
|
print("encoding text tokens")
|
|
encoder_state = encoder(text_tokens)
|
|
del encoder
|
|
return encoder_state
|
|
|
|
def decode_flax(
|
|
text_tokens: jnp.ndarray,
|
|
encoder_state: jnp.ndarray,
|
|
config: dict,
|
|
seed: int,
|
|
params: dict
|
|
) -> jnp.ndarray:
|
|
print("loading flax decoder")
|
|
decoder = DalleBartDecoderFlax(
|
|
image_token_count = config['image_length'],
|
|
text_token_count = config['max_text_length'],
|
|
image_vocab_count = config['image_vocab_size'],
|
|
attention_head_count = config['decoder_attention_heads'],
|
|
embed_count = config['d_model'],
|
|
glu_embed_count = config['decoder_ffn_dim'],
|
|
layer_count = config['decoder_layers'],
|
|
start_token = config['decoder_start_token_id']
|
|
)
|
|
print("sampling image tokens")
|
|
image_tokens = decoder.sample_image_tokens(
|
|
text_tokens,
|
|
encoder_state,
|
|
jax.random.PRNGKey(seed),
|
|
params.pop('decoder')
|
|
)
|
|
del decoder
|
|
return image_tokens
|
|
|
|
def generate_image_tokens_flax(
|
|
text: str,
|
|
seed: int,
|
|
dalle_bart_path: str
|
|
) -> numpy.ndarray:
|
|
config, vocab, merges = load_dalle_bart_metadata(dalle_bart_path)
|
|
text_tokens = tokenize(text, config, vocab, merges)
|
|
params_dalle_bart = load_dalle_bart_flax_params(dalle_bart_path)
|
|
encoder_state = encode_flax(text_tokens, config, params_dalle_bart)
|
|
image_tokens = decode_flax(
|
|
text_tokens,
|
|
encoder_state,
|
|
config, seed,
|
|
params_dalle_bart
|
|
)
|
|
return numpy.array(image_tokens)
|
|
|
|
if __name__ == '__main__':
|
|
args = parser.parse_args()
|
|
|
|
image_tokens = generate_image_tokens_flax(
|
|
args.text,
|
|
args.seed,
|
|
args.dalle_bart_path
|
|
)
|
|
print("image tokens", list(image_tokens))
|
|
image = detokenize_torch(image_tokens, args.vqgan_path)
|
|
image = save_image(image, args.image_path)
|
|
print(ascii_from_image(image, size=128)) |