from typing import Tuple, List import torch from torch import nn, LongTensor, FloatTensor, BoolTensor from .dalle_bart_encoder import GLU, AttentionBase IMAGE_TOKEN_COUNT = 256 class DecoderCrossAttention(AttentionBase): def forward( self, decoder_state: FloatTensor, encoder_state: FloatTensor, attention_mask: BoolTensor ) -> FloatTensor: keys = self.k_proj.forward(encoder_state) values = self.v_proj.forward(encoder_state) queries = self.q_proj.forward(decoder_state) return super().forward(keys, values, queries, attention_mask) class DecoderSelfAttention(AttentionBase): def __init__(self, head_count: int, embed_count: int): super().__init__(head_count, embed_count) def forward( self, decoder_state: FloatTensor, attention_state: FloatTensor, attn_mask: BoolTensor, token_index: LongTensor ) -> Tuple[FloatTensor, FloatTensor]: keys = self.k_proj.forward(decoder_state) values = self.v_proj.forward(decoder_state) queries = self.q_proj.forward(decoder_state) attn_state_new = torch.cat([keys, values]).to(attention_state.dtype) attention_state[:, token_index] = attn_state_new batch_count = decoder_state.shape[0] keys = attention_state[:batch_count] values = attention_state[batch_count:] decoder_state = super().forward(keys, values, queries, attn_mask) return decoder_state, attention_state class DecoderLayer(nn.Module): def __init__( self, head_count: int, embed_count: int, glu_embed_count: int, device: str ): super().__init__() self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count) self.self_attn = DecoderSelfAttention(head_count, embed_count) self.self_attn_layer_norm = nn.LayerNorm(embed_count) self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count) self.encoder_attn = DecoderCrossAttention(head_count, embed_count) self.encoder_attn_layer_norm = nn.LayerNorm(embed_count) self.glu = GLU(embed_count, glu_embed_count) self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device) def forward( self, decoder_state: FloatTensor, encoder_state: FloatTensor, attention_state: FloatTensor, attention_mask: BoolTensor, token_index: LongTensor ) -> Tuple[FloatTensor, FloatTensor]: # Self Attention self_attn_mask = self.token_indices < token_index + 1 self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]] residual = decoder_state decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state) decoder_state, attention_state = self.self_attn.forward( decoder_state=decoder_state, attention_state=attention_state, attn_mask=self_attn_mask, token_index=token_index ) decoder_state = self.self_attn_layer_norm.forward(decoder_state) decoder_state = residual + decoder_state # Cross Attention residual = decoder_state decoder_state = self.pre_encoder_attn_layer_norm.forward(decoder_state) decoder_state = self.encoder_attn.forward( decoder_state=decoder_state, encoder_state=encoder_state, attention_mask=attention_mask ) decoder_state = self.encoder_attn_layer_norm.forward(decoder_state) decoder_state = residual + decoder_state # Feed forward residual = decoder_state decoder_state = self.glu.forward(decoder_state) decoder_state = residual + decoder_state return decoder_state, attention_state class DalleBartDecoder(nn.Module): def __init__( self, image_vocab_count: int, embed_count: int, attention_head_count: int, glu_embed_count: int, layer_count: int, device: str ): super().__init__() self.layer_count = layer_count self.embed_count = embed_count self.image_vocab_count = image_vocab_count self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count) self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count) self.layers: List[DecoderLayer] = nn.ModuleList([ DecoderLayer( head_count=attention_head_count, embed_count=embed_count, glu_embed_count=glu_embed_count, device=device ) for _ in range(layer_count) ]) self.layernorm_embedding = nn.LayerNorm(embed_count) self.final_ln = nn.LayerNorm(embed_count) self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False) self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device) def forward( self, settings: FloatTensor, attention_mask: BoolTensor, encoder_state: FloatTensor, attention_state: FloatTensor, prev_tokens: LongTensor, token_index: LongTensor ) -> Tuple[LongTensor, FloatTensor]: image_count = encoder_state.shape[0] // 2 token_index_batched = token_index[[0] * image_count * 2] prev_tokens = prev_tokens[list(range(image_count)) * 2] prev_tokens.clamp_(0, self.image_vocab_count) decoder_state = self.embed_tokens.forward(prev_tokens) decoder_state += self.embed_positions.forward(token_index_batched) decoder_state = self.layernorm_embedding.forward(decoder_state) decoder_state = decoder_state[:, None] for i in range(self.layer_count): decoder_state, attention_state[i] = self.layers[i].forward( decoder_state, encoder_state, attention_state[i], attention_mask, token_index ) decoder_state = self.final_ln(decoder_state) logits = self.lm_head(decoder_state) temperature = settings[0] top_k = settings[1].to(torch.long) supercondition_factor = settings[2] logits = logits[:, -1, : 2 ** 14] logits: FloatTensor = ( logits[:image_count] * (1 - supercondition_factor) + logits[image_count:] * supercondition_factor ) logits_sorted, _ = logits.sort(descending=True) is_kept = logits >= logits_sorted[:, top_k: top_k + 1] logits -= logits_sorted[:, [0]] logits /= temperature logits.exp_() logits *= is_kept.to(torch.float32) image_tokens = torch.multinomial(logits, 1)[:, 0] return image_tokens, attention_state