import os import json import numpy import torch from PIL import Image from typing import Tuple, List from .text_tokenizer import TextTokenizer from .models.vqgan_detokenizer import VQGanDetokenizer from .load_params import load_vqgan_torch_params def load_dalle_bart_metadata(path: str) -> Tuple[dict, dict, List[str]]: print("loading model") for f in ['config.json', 'flax_model.msgpack', 'vocab.json', 'merges.txt']: assert(os.path.exists(os.path.join(path, f))) with open(path + '/config.json', 'r') as f: config = json.load(f) with open(path + '/vocab.json') as f: vocab = json.load(f) with open(path + '/merges.txt') as f: merges = f.read().split("\n")[1:-1] return config, vocab, merges def ascii_from_image(image: Image.Image, size: int) -> str: rgb_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata() chars = list('.,;/IOX') chars = [chars[i * len(chars) // 256] for i in rgb_pixels] chars = [chars[i * size: (i + 1) * size] for i in range(size // 2)] return '\n'.join(''.join(row) for row in chars) def save_image(image: numpy.ndarray, path: str) -> Image.Image: if os.path.isdir(path): path = os.path.join(path, 'generated.png') elif not path.endswith('.png'): path += '.png' print("saving image to", path) image: Image.Image = Image.fromarray(numpy.asarray(image)) image.save(path) return image def tokenize( text: str, config: dict, vocab: dict, merges: List[str] ) -> numpy.ndarray: print("tokenizing text") tokens = TextTokenizer(vocab, merges)(text) print("text tokens", tokens) text_tokens = numpy.ones((2, config['max_text_length']), dtype=numpy.int32) text_tokens[0, :len(tokens)] = tokens text_tokens[1, :2] = [tokens[0], tokens[-1]] return text_tokens def detokenize_torch( image_tokens: numpy.ndarray, model_path: str ) -> numpy.ndarray: print("detokenizing image") params = load_vqgan_torch_params(model_path) detokenizer = VQGanDetokenizer() detokenizer.load_state_dict(params) image_tokens = torch.tensor(image_tokens).to(torch.long) image = detokenizer.forward(image_tokens).to(torch.uint8) return image.detach().numpy()