simplified

This commit is contained in:
Brett Kuprel
2022-06-27 15:46:04 -04:00
parent 18e6a9852f
commit e7001f063c
8 changed files with 182 additions and 344 deletions

View File

@@ -1,70 +0,0 @@
import os
import json
import numpy
import torch
from PIL import Image
from typing import Tuple, List
from .text_tokenizer import TextTokenizer
from .models.vqgan_detokenizer import VQGanDetokenizer
from .load_params import load_vqgan_torch_params
def load_dalle_bart_metadata(path: str) -> Tuple[dict, dict, List[str]]:
print("loading model")
for f in ['config.json', 'flax_model.msgpack', 'vocab.json', 'merges.txt']:
assert(os.path.exists(os.path.join(path, f)))
with open(path + '/config.json', 'r') as f:
config = json.load(f)
with open(path + '/vocab.json') as f:
vocab = json.load(f)
with open(path + '/merges.txt') as f:
merges = f.read().split("\n")[1:-1]
return config, vocab, merges
def ascii_from_image(image: Image.Image, size: int) -> str:
rgb_pixels = image.resize((size, int(0.55 * size))).convert('L').getdata()
chars = list('.,;/IOX')
chars = [chars[i * len(chars) // 256] for i in rgb_pixels]
chars = [chars[i * size: (i + 1) * size] for i in range(size // 2)]
return '\n'.join(''.join(row) for row in chars)
def save_image(image: numpy.ndarray, path: str) -> Image.Image:
if os.path.isdir(path):
path = os.path.join(path, 'generated.png')
elif not path.endswith('.png'):
path += '.png'
print("saving image to", path)
image: Image.Image = Image.fromarray(numpy.asarray(image))
image.save(path)
return image
def tokenize(
text: str,
config: dict,
vocab: dict,
merges: List[str]
) -> numpy.ndarray:
print("tokenizing text")
tokens = TextTokenizer(vocab, merges)(text)
print("text tokens", tokens)
text_tokens = numpy.ones((2, config['max_text_length']), dtype=numpy.int32)
text_tokens[0, :len(tokens)] = tokens
text_tokens[1, :2] = [tokens[0], tokens[-1]]
return text_tokens
def detokenize_torch(
image_tokens: numpy.ndarray,
model_path: str
) -> numpy.ndarray:
print("detokenizing image")
params = load_vqgan_torch_params(model_path)
detokenizer = VQGanDetokenizer()
detokenizer.load_state_dict(params)
image_tokens = torch.tensor(image_tokens).to(torch.long)
image = detokenizer.forward(image_tokens).to(torch.uint8)
return image.detach().numpy()

View File

@@ -1,50 +1,9 @@
import jax
from jax import numpy as jnp
import numpy
import argparse
from load_params import load_dalle_bart_flax_params
from image_from_text import (
load_dalle_bart_metadata,
tokenize,
detokenize_torch,
save_image,
ascii_from_image
)
from models.dalle_bart_encoder_flax import DalleBartEncoderFlax
from models.dalle_bart_decoder_flax import DalleBartDecoderFlax
parser = argparse.ArgumentParser()
parser.add_argument(
'--text',
help='text to generate image from',
type=str
)
parser.add_argument(
'--seed',
help='random seed',
type=int,
default=0
)
parser.add_argument(
'--image_path',
help='generated image path',
type=str,
default='generated.png'
)
parser.add_argument(
'--dalle_bart_path',
help='pretraied dalle bart path',
type=str,
default='./pretrained/dalle_bart_mini'
)
parser.add_argument(
'--vqgan_path',
help='pretraied vqgan path',
type=str,
default='./pretrained/vqgan'
)
from .models.dalle_bart_encoder_flax import DalleBartEncoderFlax
from .models.dalle_bart_decoder_flax import DalleBartDecoderFlax
def encode_flax(
@@ -67,6 +26,7 @@ def encode_flax(
del encoder
return encoder_state
def decode_flax(
text_tokens: jnp.ndarray,
encoder_state: jnp.ndarray,
@@ -95,32 +55,25 @@ def decode_flax(
del decoder
return image_tokens
def generate_image_tokens_flax(
text: str,
seed: int,
dalle_bart_path: str
text_tokens: numpy.ndarray,
seed: int,
config: dict,
params: dict
) -> numpy.ndarray:
config, vocab, merges = load_dalle_bart_metadata(dalle_bart_path)
text_tokens = tokenize(text, config, vocab, merges)
params_dalle_bart = load_dalle_bart_flax_params(dalle_bart_path)
encoder_state = encode_flax(text_tokens, config, params_dalle_bart)
encoder_state = encode_flax(
text_tokens,
config,
params
)
image_tokens = decode_flax(
text_tokens,
encoder_state,
config, seed,
params_dalle_bart
)
return numpy.array(image_tokens)
if __name__ == '__main__':
args = parser.parse_args()
image_tokens = generate_image_tokens_flax(
args.text,
args.seed,
args.dalle_bart_path
config,
seed,
params
)
image_tokens = numpy.array(image_tokens)
print("image tokens", list(image_tokens))
image = detokenize_torch(image_tokens, args.vqgan_path)
image = save_image(image, args.image_path)
print(ascii_from_image(image, size=128))
return image_tokens

View File

@@ -0,0 +1,113 @@
import numpy
import torch
from torch import Tensor
from typing import Dict
from .models.vqgan_detokenizer import VQGanDetokenizer
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
from .load_params import (
load_vqgan_torch_params,
convert_dalle_bart_torch_from_flax_params
)
def encode_torch(
text_tokens: numpy.ndarray,
config: dict,
params: dict
) -> Tensor:
print("loading torch encoder")
encoder = DalleBartEncoderTorch(
layer_count = config['encoder_layers'],
embed_count = config['d_model'],
attention_head_count = config['encoder_attention_heads'],
text_vocab_count = config['encoder_vocab_size'],
text_token_count = config['max_text_length'],
glu_embed_count = config['encoder_ffn_dim']
)
encoder_params = convert_dalle_bart_torch_from_flax_params(
params.pop('encoder'),
layer_count=config['encoder_layers'],
is_encoder=True
)
encoder.load_state_dict(encoder_params, strict=False)
del encoder_params
print("encoding text tokens")
text_tokens = torch.tensor(text_tokens).to(torch.long)
encoder_state = encoder(text_tokens)
del encoder
return encoder_state
def decode_torch(
text_tokens: Tensor,
encoder_state: Tensor,
config: dict,
seed: int,
params: dict,
image_token_count: int
) -> Tensor:
print("loading torch decoder")
decoder = DalleBartDecoderTorch(
image_vocab_size = config['image_vocab_size'],
image_token_count = config['image_length'],
sample_token_count = image_token_count,
embed_count = config['d_model'],
attention_head_count = config['decoder_attention_heads'],
glu_embed_count = config['decoder_ffn_dim'],
layer_count = config['decoder_layers'],
batch_count = 2,
start_token = config['decoder_start_token_id'],
is_verbose = True
)
decoder_params = convert_dalle_bart_torch_from_flax_params(
params.pop('decoder'),
layer_count=config['decoder_layers'],
is_encoder=False
)
decoder.load_state_dict(decoder_params, strict=False)
del decoder_params
print("sampling image tokens")
torch.manual_seed(seed)
text_tokens = torch.tensor(text_tokens).to(torch.long)
image_tokens = decoder.forward(text_tokens, encoder_state)
return image_tokens
def generate_image_tokens_torch(
text_tokens: numpy.ndarray,
seed: int,
config: dict,
params: dict,
image_token_count: int
) -> numpy.ndarray:
encoder_state = encode_torch(
text_tokens,
config,
params
)
image_tokens = decode_torch(
text_tokens,
encoder_state,
config,
seed,
params,
image_token_count
)
return image_tokens.detach().numpy()
def detokenize_torch(image_tokens: numpy.ndarray) -> numpy.ndarray:
print("detokenizing image")
model_path = './pretrained/vqgan'
params = load_vqgan_torch_params(model_path)
detokenizer = VQGanDetokenizer()
detokenizer.load_state_dict(params)
image_tokens = torch.tensor(image_tokens).to(torch.long)
image = detokenizer.forward(image_tokens).to(torch.uint8)
return image.detach().numpy()