support bfloat16
This commit is contained in:
parent
5f526e2109
commit
da62298f06
8
README.md
vendored
8
README.md
vendored
|
@ -12,7 +12,6 @@ To generate a 4x4 grid of DALL·E Mega images it takes:
|
|||
- 89 sec with a T4 in Colab
|
||||
- 48 sec with a P100 in Colab
|
||||
- 14 sec with an A100 on Replicate
|
||||
- TBD with an H100 (@NVIDIA?)
|
||||
|
||||
The flax model and code for converting it to torch can be found [here](https://github.com/kuprel/min-dalle-flax).
|
||||
|
||||
|
@ -30,13 +29,14 @@ Load the model parameters once and reuse the model to generate multiple images.
|
|||
from min_dalle import MinDalle
|
||||
|
||||
model = MinDalle(
|
||||
models_root='./pretrained',
|
||||
dtype=torch.float32,
|
||||
is_mega=True,
|
||||
is_reusable=True,
|
||||
models_root='./pretrained'
|
||||
is_reusable=True
|
||||
)
|
||||
```
|
||||
|
||||
The required models will be downloaded to `models_root` if they are not already there. Once everything has finished initializing, call `generate_image` with some text as many times as you want. Use a positive `seed` for reproducible results. Higher values for `log2_supercondition_factor` result in better agreement with the text but a narrower variety of generated images. Every image token is sampled from the top $k$ most probable tokens.
|
||||
The required models will be downloaded to `models_root` if they are not already there. If you have an Ampere architecture GPU you can set the `dtype=torch.bfloat16` and save GPU memory. There is still an issue with `dtype=torch.float16` that needs to be sorted out. Once everything has finished initializing, call `generate_image` with some text as many times as you want. Use a positive `seed` for reproducible results. Higher values for `log2_supercondition_factor` result in better agreement with the text but a narrower variety of generated images. Every image token is sampled from the top-$k$ most probable tokens.
|
||||
|
||||
```python
|
||||
image = model.generate_image(
|
||||
|
|
89
README.rst
vendored
89
README.rst
vendored
|
@ -1,16 +1,16 @@
|
|||
min(DALL·E)
|
||||
===========
|
||||
|
||||
|Open In Colab| |Replicate| |Join us on Discord|
|
||||
|Colab| |Replicate| |Discord|
|
||||
|
||||
This is a fast, minimal implementation of Boris Dayma’s `DALL·E
|
||||
This is a fast, minimal port of Boris Dayma’s `DALL·E
|
||||
Mega <https://github.com/borisdayma/dalle-mini>`__. It has been stripped
|
||||
down for inference and converted to PyTorch. The only third party
|
||||
dependencies are numpy, requests, pillow and torch.
|
||||
|
||||
To generate a 4x4 grid of DALL·E Mega images it takes: - 89 sec with a
|
||||
T4 in Colab - 48 sec with a P100 in Colab - 14 sec with an A100 on
|
||||
Replicate - TBD with an H100 (@NVIDIA?)
|
||||
Replicate
|
||||
|
||||
The flax model and code for converting it to torch can be found
|
||||
`here <https://github.com/kuprel/min-dalle-flax>`__.
|
||||
|
@ -32,47 +32,58 @@ images.
|
|||
|
||||
from min_dalle import MinDalle
|
||||
|
||||
model = MinDalle(is_mega=True, models_root='./pretrained')
|
||||
model = MinDalle(
|
||||
is_mega=True,
|
||||
is_reusable=True,
|
||||
models_root='./pretrained'
|
||||
)
|
||||
|
||||
The required models will be downloaded to ``models_root`` if they are
|
||||
not already there. Once everything has finished initializing, call
|
||||
``generate_image`` with some text and a seed as many times as you want.
|
||||
``generate_image`` with some text as many times as you want. Use a
|
||||
positive ``seed`` for reproducible results. Higher values for
|
||||
``log2_supercondition_factor`` result in better agreement with the text
|
||||
but a narrower variety of generated images. Every image token is sampled
|
||||
from the top-:math:`k` most probable tokens.
|
||||
|
||||
.. code:: python
|
||||
|
||||
text = 'Dali painting of WALL·E'
|
||||
image = model.generate_image(text, seed=0, grid_size=4)
|
||||
image = model.generate_image(
|
||||
text='Nuclear explosion broccoli',
|
||||
seed=-1,
|
||||
grid_size=4,
|
||||
log2_k=6,
|
||||
log2_supercondition_factor=5,
|
||||
is_verbose=False
|
||||
)
|
||||
|
||||
display(image)
|
||||
|
||||
Interactive
|
||||
~~~~~~~~~~~
|
||||
|
||||
If the model is being used interactively (e.g. in a notebook)
|
||||
``generate_image_stream`` can be used to generate a stream of images as
|
||||
the model is decoding. The detokenizer adds a slight delay for each
|
||||
image. Setting ``log2_mid_count`` to 3 results in a total of
|
||||
``2 ** 3 = 8`` generated images. The only valid values for
|
||||
``log2_mid_count`` are 0, 1, 2, 3, and 4. This is implemented in the
|
||||
colab.
|
||||
|
||||
.. code:: python
|
||||
|
||||
text = 'Rusty Iron Man suit found abandoned in the woods being reclaimed by nature'
|
||||
image = model.generate_image(text, seed=0, grid_size=3)
|
||||
display(image)
|
||||
image_stream = model.generate_image_stream(
|
||||
text='Dali painting of WALL·E',
|
||||
seed=-1,
|
||||
grid_size=3,
|
||||
log2_mid_count=3,
|
||||
log2_k=6,
|
||||
log2_supercondition_factor=3,
|
||||
is_verbose=False
|
||||
)
|
||||
|
||||
.. code:: python
|
||||
|
||||
text = 'court sketch of godzilla on trial'
|
||||
image = model.generate_image(text, seed=6, grid_size=3)
|
||||
display(image)
|
||||
|
||||
.. code:: python
|
||||
|
||||
text = 'a funeral at Whole Foods'
|
||||
image = model.generate_image(text, seed=10, grid_size=3)
|
||||
display(image)
|
||||
|
||||
.. code:: python
|
||||
|
||||
text = 'Jesus turning water into wine on Americas Got Talent'
|
||||
image = model.generate_image(text, seed=2, grid_size=3)
|
||||
display(image)
|
||||
|
||||
.. code:: python
|
||||
|
||||
text = 'cctv footage of Yoda robbing a liquor store'
|
||||
image = model.generate_image(text, seed=0, grid_size=3)
|
||||
display(image)
|
||||
for image in image_stream:
|
||||
display(image)
|
||||
|
||||
Command Line
|
||||
~~~~~~~~~~~~
|
||||
|
@ -81,15 +92,11 @@ Use ``image_from_text.py`` to generate images from the command line.
|
|||
|
||||
.. code:: bash
|
||||
|
||||
$ python image_from_text.py --text='artificial intelligence' --no-mega --seed=7
|
||||
$ python image_from_text.py --text='artificial intelligence' --no-mega
|
||||
|
||||
.. code:: bash
|
||||
|
||||
$ python image_from_text.py --text='trail cam footage of gollum eating watermelon' --mega --seed=1 --grid-size=3
|
||||
|
||||
.. |Open In Colab| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
.. |Colab| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
:target: https://colab.research.google.com/github/kuprel/min-dalle/blob/main/min_dalle.ipynb
|
||||
.. |Replicate| image:: https://replicate.com/kuprel/min-dalle/badge
|
||||
:target: https://replicate.com/kuprel/min-dalle
|
||||
.. |Join us on Discord| image:: https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white
|
||||
:target: https://discord.gg/xBPBXfcFHd
|
||||
.. |Discord| image:: https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white
|
||||
:target: https://discord.com/channels/823813159592001537/912729332311556136
|
||||
|
|
4
cog.yaml
vendored
4
cog.yaml
vendored
|
@ -6,8 +6,8 @@ build:
|
|||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
python_packages:
|
||||
- "min-dalle==0.2.29"
|
||||
- "min-dalle==0.2.35"
|
||||
run:
|
||||
- pip install torch==1.10.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
|
||||
- pip install torch==1.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
|
||||
|
||||
predict: "replicate_predictor.py:ReplicatePredictor"
|
||||
|
|
26
min_dalle.ipynb
vendored
26
min_dalle.ipynb
vendored
File diff suppressed because one or more lines are too long
|
@ -18,13 +18,15 @@ MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
|
|||
class MinDalle:
|
||||
def __init__(
|
||||
self,
|
||||
is_mega: bool,
|
||||
is_reusable: bool = True,
|
||||
models_root: str = 'pretrained',
|
||||
dtype: torch.dtype = torch.float32,
|
||||
is_mega: bool = True,
|
||||
is_reusable: bool = True,
|
||||
is_verbose = True
|
||||
):
|
||||
self.is_mega = is_mega
|
||||
self.is_reusable = is_reusable
|
||||
self.dtype = dtype
|
||||
self.is_verbose = is_verbose
|
||||
self.text_token_count = 64
|
||||
self.layer_count = 24 if is_mega else 12
|
||||
|
@ -34,7 +36,6 @@ class MinDalle:
|
|||
self.text_vocab_count = 50272 if is_mega else 50264
|
||||
self.image_vocab_count = 16415 if is_mega else 16384
|
||||
|
||||
if self.is_verbose: print("initializing MinDalle")
|
||||
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
||||
dalle_path = os.path.join(models_root, model_name)
|
||||
vqgan_path = os.path.join(models_root, 'vqgan')
|
||||
|
@ -105,7 +106,7 @@ class MinDalle:
|
|||
text_token_count = self.text_token_count,
|
||||
text_vocab_count = self.text_vocab_count,
|
||||
layer_count = self.layer_count
|
||||
)
|
||||
).to(self.dtype).eval()
|
||||
params = torch.load(self.encoder_params_path)
|
||||
self.encoder.load_state_dict(params, strict=False)
|
||||
del params
|
||||
|
@ -123,7 +124,7 @@ class MinDalle:
|
|||
glu_embed_count = self.glu_embed_count,
|
||||
layer_count = self.layer_count,
|
||||
start_token = self.image_vocab_count
|
||||
)
|
||||
).to(self.dtype).eval()
|
||||
params = torch.load(self.decoder_params_path)
|
||||
self.decoder.load_state_dict(params, strict=False)
|
||||
del params
|
||||
|
@ -134,7 +135,7 @@ class MinDalle:
|
|||
is_downloaded = os.path.exists(self.detoker_params_path)
|
||||
if not is_downloaded: self.download_detokenizer()
|
||||
if self.is_verbose: print("initializing VQGanDetokenizer")
|
||||
self.detokenizer = VQGanDetokenizer()
|
||||
self.detokenizer = VQGanDetokenizer().to(self.dtype).eval()
|
||||
params = torch.load(self.detoker_params_path)
|
||||
self.detokenizer.load_state_dict(params)
|
||||
del params
|
||||
|
@ -184,38 +185,41 @@ class MinDalle:
|
|||
|
||||
if not self.is_reusable: self.init_encoder()
|
||||
if is_verbose: print("encoding text tokens")
|
||||
encoder_state = self.encoder.forward(text_tokens)
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
encoder_state = self.encoder.forward(text_tokens)
|
||||
if not self.is_reusable: del self.encoder
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
|
||||
if not self.is_reusable: self.init_decoder()
|
||||
|
||||
encoder_state, attention_mask, attention_state, image_tokens = (
|
||||
self.decoder.decode_initial(
|
||||
seed,
|
||||
grid_size ** 2,
|
||||
text_tokens,
|
||||
encoder_state
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
encoder_state, attention_mask, attention_state, image_tokens = (
|
||||
self.decoder.decode_initial(
|
||||
seed,
|
||||
grid_size ** 2,
|
||||
text_tokens,
|
||||
encoder_state
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
row_count = 16
|
||||
for row_index in range(row_count):
|
||||
if is_verbose:
|
||||
print('sampling row {} of {}'.format(row_index + 1, row_count))
|
||||
attention_state, image_tokens = self.decoder.decode_row(
|
||||
row_index,
|
||||
log2_k,
|
||||
log2_supercondition_factor,
|
||||
encoder_state,
|
||||
attention_mask,
|
||||
attention_state,
|
||||
image_tokens
|
||||
)
|
||||
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
|
||||
tokens = image_tokens[:, 1:]
|
||||
image = self.image_from_tokens(grid_size, tokens, is_verbose)
|
||||
yield image
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
attention_state, image_tokens = self.decoder.decode_row(
|
||||
row_index,
|
||||
log2_k,
|
||||
log2_supercondition_factor,
|
||||
encoder_state,
|
||||
attention_mask,
|
||||
attention_state,
|
||||
image_tokens
|
||||
)
|
||||
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
|
||||
tokens = image_tokens[:, 1:]
|
||||
image = self.image_from_tokens(grid_size, tokens, is_verbose)
|
||||
yield image
|
||||
|
||||
|
||||
def generate_image(
|
||||
|
|
|
@ -40,7 +40,8 @@ class DecoderSelfAttention(AttentionBase):
|
|||
queries = self.q_proj.forward(decoder_state)
|
||||
attn_mask = self.token_indices < token_index + 1
|
||||
attn_mask = attn_mask[None][[0] * decoder_state.shape[0]]
|
||||
attention_state[:, token_index] = torch.cat([keys, values])
|
||||
attn_state_new = torch.cat([keys, values]).to(attention_state.dtype)
|
||||
attention_state[:, token_index] = attn_state_new
|
||||
batch_count = decoder_state.shape[0]
|
||||
keys = attention_state[:batch_count]
|
||||
values = attention_state[batch_count:]
|
||||
|
|
|
@ -82,7 +82,7 @@ class Upsample(Module):
|
|||
self.conv = Conv2d(n, n, 3, padding=1)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x = self.upsample.forward(x)
|
||||
x = self.upsample.forward(x.to(torch.float32))
|
||||
x = self.conv.forward(x)
|
||||
return x
|
||||
|
||||
|
|
|
@ -19,9 +19,9 @@ class ReplicatePredictor(BasePredictor):
|
|||
default=True
|
||||
),
|
||||
grid_size: int = Input(
|
||||
description='Size of the image grid',
|
||||
description='Size of the image grid. 4x4 takes about 15 seconds, 8x8 takes about 45 seconds',
|
||||
ge=1,
|
||||
le=4,
|
||||
le=8,
|
||||
default=4
|
||||
),
|
||||
log2_supercondition_factor: int = Input(
|
||||
|
|
8
setup.py
8
setup.py
|
@ -4,8 +4,8 @@ from pathlib import Path
|
|||
setuptools.setup(
|
||||
name='min-dalle',
|
||||
description = 'min(DALL·E)',
|
||||
long_description=(Path(__file__).parent / "README.rst").read_text(),
|
||||
version='0.2.29',
|
||||
# long_description=(Path(__file__).parent / "README.rst").read_text(),
|
||||
version='0.2.35',
|
||||
author='Brett Kuprel',
|
||||
author_email='brkuprel@gmail.com',
|
||||
url='https://github.com/kuprel/min-dalle',
|
||||
|
@ -15,8 +15,8 @@ setuptools.setup(
|
|||
],
|
||||
license='MIT',
|
||||
install_requires=[
|
||||
'torch>=1.10.0',
|
||||
'typing_extensions>=4.1.0',
|
||||
'torch>=1.11',
|
||||
'typing_extensions>=4.1',
|
||||
'numpy>=1.21',
|
||||
'pillow>=7.1',
|
||||
'requests>=2.23'
|
||||
|
|
Loading…
Reference in New Issue
Block a user