simplified flax attention and matched torch attention
This commit is contained in:
@@ -13,15 +13,9 @@ class DecoderCrossAttentionFlax(AttentionFlax):
|
||||
encoder_state: jnp.ndarray,
|
||||
attention_mask: jnp.ndarray,
|
||||
) -> jnp.ndarray:
|
||||
keys: jnp.ndarray = self.k_proj(encoder_state)
|
||||
values: jnp.ndarray = self.v_proj(encoder_state)
|
||||
queries: jnp.ndarray = self.q_proj(decoder_state)
|
||||
query_shape = queries.shape[:2] + (self.head_count, -1)
|
||||
key_value_shape = keys.shape[:2] + (self.head_count, -1)
|
||||
keys = keys.reshape(key_value_shape)
|
||||
values = values.reshape(key_value_shape)
|
||||
queries = queries.reshape(query_shape)
|
||||
queries /= queries.shape[-1] ** 0.5
|
||||
keys = self.k_proj(encoder_state)
|
||||
values = self.v_proj(encoder_state)
|
||||
queries = self.q_proj(decoder_state)
|
||||
return self.forward(keys, values, queries, attention_mask)
|
||||
|
||||
|
||||
@@ -29,31 +23,29 @@ class DecoderSelfAttentionFlax(AttentionFlax):
|
||||
def __call__(
|
||||
self,
|
||||
decoder_state: jnp.ndarray,
|
||||
keys_state: jnp.ndarray,
|
||||
values_state: jnp.ndarray,
|
||||
attention_state: jnp.ndarray,
|
||||
attention_mask: jnp.ndarray,
|
||||
state_index: tuple
|
||||
) -> Tuple[jnp.ndarray, Tuple[jnp.ndarray, jnp.ndarray]]:
|
||||
shape_split = decoder_state.shape[:2] + (self.head_count, -1)
|
||||
keys_state = lax.dynamic_update_slice(
|
||||
keys_state,
|
||||
self.k_proj(decoder_state).reshape(shape_split),
|
||||
) -> Tuple[jnp.ndarray, jnp.ndarray]:
|
||||
keys = self.k_proj(decoder_state)
|
||||
values = self.v_proj(decoder_state)
|
||||
queries = self.q_proj(decoder_state)
|
||||
|
||||
attention_state = lax.dynamic_update_slice(
|
||||
attention_state,
|
||||
jnp.concatenate([keys, values]),
|
||||
state_index
|
||||
)
|
||||
values_state = lax.dynamic_update_slice(
|
||||
values_state,
|
||||
self.v_proj(decoder_state).reshape(shape_split),
|
||||
state_index
|
||||
)
|
||||
queries = self.q_proj(decoder_state).reshape(shape_split)
|
||||
queries /= queries.shape[-1] ** 0.5
|
||||
batch_count = decoder_state.shape[0]
|
||||
keys, values = attention_state[:batch_count], attention_state[batch_count:]
|
||||
|
||||
decoder_state = self.forward(
|
||||
keys_state,
|
||||
values_state,
|
||||
keys,
|
||||
values,
|
||||
queries,
|
||||
attention_mask
|
||||
)
|
||||
return decoder_state, (keys_state, values_state)
|
||||
return decoder_state, attention_state
|
||||
|
||||
|
||||
class DalleBartDecoderLayerFlax(nn.Module):
|
||||
@@ -82,11 +74,10 @@ class DalleBartDecoderLayerFlax(nn.Module):
|
||||
self,
|
||||
decoder_state: jnp.ndarray,
|
||||
encoder_state: jnp.ndarray,
|
||||
keys_state: jnp.ndarray,
|
||||
values_state: jnp.ndarray,
|
||||
attention_state: jnp.ndarray,
|
||||
attention_mask: jnp.ndarray,
|
||||
token_index: int
|
||||
) -> Tuple[jnp.ndarray, Tuple[jnp.ndarray, jnp.ndarray]]:
|
||||
) -> Tuple[jnp.ndarray, jnp.ndarray]:
|
||||
# Self Attention
|
||||
residual = decoder_state
|
||||
decoder_state = self.pre_self_attn_layer_norm(decoder_state)
|
||||
@@ -94,12 +85,11 @@ class DalleBartDecoderLayerFlax(nn.Module):
|
||||
jnp.arange(self.image_token_count) < token_index + 1,
|
||||
(decoder_state.shape[0], 1)
|
||||
)
|
||||
decoder_state, keys_values_state = self.self_attn(
|
||||
decoder_state, attention_state = self.self_attn(
|
||||
decoder_state,
|
||||
keys_state,
|
||||
values_state,
|
||||
attention_state,
|
||||
self_attention_mask,
|
||||
(0, token_index, 0, 0)
|
||||
(0, token_index, 0)
|
||||
)
|
||||
decoder_state = self.self_attn_layer_norm(decoder_state)
|
||||
decoder_state = residual + decoder_state
|
||||
@@ -120,15 +110,14 @@ class DalleBartDecoderLayerFlax(nn.Module):
|
||||
decoder_state = self.glu(decoder_state)
|
||||
decoder_state = residual + decoder_state
|
||||
|
||||
return decoder_state, keys_values_state
|
||||
return decoder_state, attention_state
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class SampleState:
|
||||
prev_token: jnp.ndarray
|
||||
prng_key: jnp.ndarray
|
||||
keys_state: jnp.ndarray
|
||||
values_state: jnp.ndarray
|
||||
attention_state: jnp.ndarray
|
||||
|
||||
def super_conditioned(logits: jnp.ndarray, a: float) -> jnp.ndarray:
|
||||
return a * logits[0, -1] + (1 - a) * logits[1, -1]
|
||||
@@ -161,8 +150,8 @@ class DalleBartDecoderFlax(nn.Module):
|
||||
DalleBartDecoderLayerFlax,
|
||||
variable_axes = { "params": 0, "cache": 0 },
|
||||
split_rngs = { "params": True },
|
||||
in_axes = (nn.broadcast, 0, 0, nn.broadcast, nn.broadcast),
|
||||
out_axes = (0, 0),
|
||||
in_axes = (nn.broadcast, 0, nn.broadcast, nn.broadcast),
|
||||
out_axes = 0,
|
||||
length=self.layer_count,
|
||||
)(
|
||||
self.image_token_count,
|
||||
@@ -178,28 +167,26 @@ class DalleBartDecoderFlax(nn.Module):
|
||||
def __call__(
|
||||
self,
|
||||
encoder_state: jnp.ndarray,
|
||||
keys_state: jnp.ndarray,
|
||||
values_state: jnp.ndarray,
|
||||
attention_state: jnp.ndarray,
|
||||
attention_mask: jnp.ndarray,
|
||||
prev_token: int,
|
||||
token_index: int
|
||||
) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]:
|
||||
) -> Tuple[jnp.ndarray, jnp.ndarray]:
|
||||
batch_count = encoder_state.shape[0]
|
||||
ones = jnp.ones((batch_count, 1), dtype=jnp.int32)
|
||||
decoder_state = self.embed_tokens(prev_token * ones)
|
||||
decoder_state += self.embed_positions(token_index * ones)
|
||||
decoder_state = self.layernorm_embedding(decoder_state)
|
||||
decoder_state, (keys_state, values_state) = self.layers(
|
||||
decoder_state, attention_state = self.layers(
|
||||
decoder_state,
|
||||
encoder_state,
|
||||
keys_state,
|
||||
values_state,
|
||||
attention_state,
|
||||
attention_mask,
|
||||
token_index
|
||||
)
|
||||
decoder_state = self.final_ln(decoder_state)
|
||||
decoder_state = self.lm_head(decoder_state)
|
||||
return decoder_state, keys_state, values_state
|
||||
return decoder_state, attention_state
|
||||
|
||||
def sample_image_tokens(
|
||||
self,
|
||||
@@ -213,12 +200,11 @@ class DalleBartDecoderFlax(nn.Module):
|
||||
def sample_next_image_token(
|
||||
state: SampleState,
|
||||
token_index: int
|
||||
) -> Tuple[SampleState, None]:
|
||||
logits, keys_state, values_state = self.apply(
|
||||
) -> Tuple[SampleState, jnp.ndarray]:
|
||||
logits, attention_state = self.apply(
|
||||
{ 'params': params },
|
||||
encoder_state = encoder_state,
|
||||
keys_state = state.keys_state,
|
||||
values_state = state.values_state,
|
||||
attention_state = state.attention_state,
|
||||
attention_mask = attention_mask,
|
||||
prev_token = state.prev_token,
|
||||
token_index = token_index
|
||||
@@ -233,26 +219,23 @@ class DalleBartDecoderFlax(nn.Module):
|
||||
state = SampleState(
|
||||
prev_token = next_token,
|
||||
prng_key = prng_key_next,
|
||||
keys_state = keys_state,
|
||||
values_state = values_state
|
||||
attention_state = attention_state
|
||||
)
|
||||
|
||||
return state, next_token
|
||||
|
||||
batch_count = encoder_state.shape[0]
|
||||
state_shape = (
|
||||
attention_state_shape = (
|
||||
self.layer_count,
|
||||
batch_count,
|
||||
batch_count * 2,
|
||||
self.image_token_count,
|
||||
self.attention_head_count,
|
||||
self.embed_count // self.attention_head_count
|
||||
self.embed_count
|
||||
)
|
||||
|
||||
initial_state = SampleState(
|
||||
prev_token = self.start_token,
|
||||
prng_key = prng_key,
|
||||
keys_state = jnp.zeros(state_shape),
|
||||
values_state = jnp.zeros(state_shape)
|
||||
attention_state = jnp.zeros(attention_state_shape)
|
||||
)
|
||||
|
||||
_, image_tokens = lax.scan(
|
||||
|
@@ -23,22 +23,22 @@ class DecoderSelfAttentionTorch(AttentionTorch):
|
||||
def forward(
|
||||
self,
|
||||
decoder_state: FloatTensor,
|
||||
keys_values: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
token_mask: BoolTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
batch_count = decoder_state.shape[0]
|
||||
keys = self.k_proj.forward(decoder_state)
|
||||
values = self.v_proj.forward(decoder_state)
|
||||
queries = self.q_proj.forward(decoder_state)
|
||||
keys_values = torch.where(
|
||||
attention_state = torch.where(
|
||||
token_mask[None, :, None],
|
||||
torch.cat([keys, values]),
|
||||
keys_values
|
||||
attention_state
|
||||
)
|
||||
keys, values = keys_values[:batch_count], keys_values[batch_count:]
|
||||
batch_count = decoder_state.shape[0]
|
||||
keys, values = attention_state[:batch_count], attention_state[batch_count:]
|
||||
decoder_state = super().forward(keys, values, queries, attention_mask)
|
||||
return decoder_state, keys_values
|
||||
return decoder_state, attention_state
|
||||
|
||||
|
||||
class DecoderLayerTorch(nn.Module):
|
||||
@@ -67,7 +67,7 @@ class DecoderLayerTorch(nn.Module):
|
||||
self,
|
||||
decoder_state: FloatTensor,
|
||||
encoder_state: FloatTensor,
|
||||
keys_values_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
attention_mask: BoolTensor,
|
||||
token_index: LongTensor
|
||||
) -> Tuple[FloatTensor, FloatTensor]:
|
||||
@@ -77,9 +77,9 @@ class DecoderLayerTorch(nn.Module):
|
||||
self_attn_mask = self.token_indices < token_index + 1
|
||||
token_mask = self.token_indices == token_index
|
||||
self_attn_mask = torch.stack([self_attn_mask] * decoder_state.shape[0])
|
||||
decoder_state, keys_values_state = self.self_attn.forward(
|
||||
decoder_state, attention_state = self.self_attn.forward(
|
||||
decoder_state,
|
||||
keys_values_state,
|
||||
attention_state,
|
||||
self_attn_mask,
|
||||
token_mask
|
||||
)
|
||||
@@ -102,7 +102,7 @@ class DecoderLayerTorch(nn.Module):
|
||||
decoder_state = self.glu.forward(decoder_state)
|
||||
decoder_state = residual + decoder_state
|
||||
|
||||
return decoder_state, keys_values_state
|
||||
return decoder_state, attention_state
|
||||
|
||||
|
||||
class DalleBartDecoderTorch(nn.Module):
|
||||
@@ -139,8 +139,9 @@ class DalleBartDecoderTorch(nn.Module):
|
||||
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
||||
self.final_ln = nn.LayerNorm(embed_count)
|
||||
self.lm_head = nn.Linear(embed_count, image_vocab_size + 1, bias=False)
|
||||
self.keys_values_state_shape = (
|
||||
layer_count * 2 * batch_count,
|
||||
self.attention_state_shape = (
|
||||
layer_count,
|
||||
2 * batch_count,
|
||||
image_token_count,
|
||||
embed_count
|
||||
)
|
||||
@@ -157,7 +158,7 @@ class DalleBartDecoderTorch(nn.Module):
|
||||
self,
|
||||
text_tokens: LongTensor,
|
||||
encoder_state: FloatTensor,
|
||||
keys_values_state: FloatTensor,
|
||||
attention_state: FloatTensor,
|
||||
prev_token_and_index: LongTensor
|
||||
) -> Tuple[LongTensor, FloatTensor]:
|
||||
attention_mask = text_tokens.not_equal(1)
|
||||
@@ -168,17 +169,16 @@ class DalleBartDecoderTorch(nn.Module):
|
||||
decoder_state += self.embed_positions.forward(token_index)
|
||||
decoder_state = self.layernorm_embedding.forward(decoder_state)
|
||||
decoder_state = decoder_state[:, None]
|
||||
keys_values = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
j1, j2 = i * 2 * batch_count, (i + 1) * 2 * batch_count
|
||||
decoder_state, keys_values_layer = layer.forward(
|
||||
attention_states_new = []
|
||||
for i in range(self.layer_count):
|
||||
decoder_state, attention_state_layer = self.layers[i].forward(
|
||||
decoder_state,
|
||||
encoder_state,
|
||||
keys_values_state[j1:j2],
|
||||
attention_state[i],
|
||||
attention_mask,
|
||||
token_index[:1]
|
||||
)
|
||||
keys_values.append(keys_values_layer)
|
||||
attention_states_new.append(attention_state_layer)
|
||||
decoder_state = self.final_ln(decoder_state)
|
||||
logits = self.lm_head(decoder_state)
|
||||
a = self.condition_factor
|
||||
@@ -190,7 +190,7 @@ class DalleBartDecoderTorch(nn.Module):
|
||||
self.zero_prob,
|
||||
torch.exp(logits - top_logits[0])
|
||||
)
|
||||
return probs, torch.cat(keys_values)
|
||||
return probs, torch.stack(attention_states_new)
|
||||
|
||||
|
||||
def forward(
|
||||
@@ -199,17 +199,17 @@ class DalleBartDecoderTorch(nn.Module):
|
||||
encoder_state: FloatTensor
|
||||
) -> LongTensor:
|
||||
image_tokens: List[LongTensor] = []
|
||||
keys_values_state = torch.zeros(self.keys_values_state_shape)
|
||||
attention_state = torch.zeros(self.attention_state_shape)
|
||||
if torch.cuda.is_available():
|
||||
keys_values_state = keys_values_state.cuda()
|
||||
attention_state = attention_state.cuda()
|
||||
image_token = self.start_token
|
||||
|
||||
for i in range(self.sample_token_count):
|
||||
token_index = self.token_indices[i:i+1]
|
||||
probs, keys_values_state = self.decode_step(
|
||||
probs, attention_state = self.decode_step(
|
||||
text_tokens = text_tokens,
|
||||
encoder_state = encoder_state,
|
||||
keys_values_state = keys_values_state,
|
||||
attention_state = attention_state,
|
||||
prev_token_and_index = torch.cat([image_token, token_index])
|
||||
)
|
||||
|
||||
|
@@ -41,6 +41,10 @@ class AttentionFlax(nn.Module):
|
||||
queries: jnp.ndarray,
|
||||
attention_mask: jnp.ndarray
|
||||
) -> jnp.ndarray:
|
||||
keys = keys.reshape(keys.shape[:2] + (self.head_count, -1))
|
||||
values = values.reshape(values.shape[:2] + (self.head_count, -1))
|
||||
queries = queries.reshape(queries.shape[:2] + (self.head_count, -1))
|
||||
queries /= queries.shape[-1] ** 0.5
|
||||
attention_bias: jnp.ndarray = lax.select(
|
||||
attention_mask,
|
||||
jnp.full(attention_mask.shape, 0.0),
|
||||
@@ -70,11 +74,9 @@ class EncoderSelfAttentionFlax(AttentionFlax):
|
||||
encoder_state: jnp.ndarray,
|
||||
attention_mask: jnp.ndarray
|
||||
) -> jnp.ndarray:
|
||||
shape_split = encoder_state.shape[:2] + (self.head_count, -1)
|
||||
keys = self.k_proj(encoder_state).reshape(shape_split)
|
||||
values = self.v_proj(encoder_state).reshape(shape_split)
|
||||
queries = self.q_proj(encoder_state).reshape(shape_split)
|
||||
queries /= queries.shape[-1] ** 0.5
|
||||
keys = self.k_proj(encoder_state)
|
||||
values = self.v_proj(encoder_state)
|
||||
queries = self.q_proj(encoder_state)
|
||||
return self.forward(keys, values, queries, attention_mask)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user