add temperature parameter

This commit is contained in:
Brett Kuprel 2022-07-11 12:28:20 -04:00
parent 2feabd7847
commit d64e957731
5 changed files with 74 additions and 55 deletions

2
cog.yaml vendored
View File

@ -6,7 +6,7 @@ build:
- "libgl1-mesa-glx" - "libgl1-mesa-glx"
- "libglib2.0-0" - "libglib2.0-0"
python_packages: python_packages:
- "min-dalle==0.3.11" - "min-dalle==0.3.12"
run: run:
- pip install torch==1.12.0+cu116 -f https://download.pytorch.org/whl/torch_stable.html - pip install torch==1.12.0+cu116 -f https://download.pytorch.org/whl/torch_stable.html

View File

@ -13,6 +13,7 @@ parser.add_argument('--seed', type=int, default=-1)
parser.add_argument('--grid-size', type=int, default=1) parser.add_argument('--grid-size', type=int, default=1)
parser.add_argument('--image-path', type=str, default='generated') parser.add_argument('--image-path', type=str, default='generated')
parser.add_argument('--models-root', type=str, default='pretrained') parser.add_argument('--models-root', type=str, default='pretrained')
parser.add_argument('--top_k', type=int, default=256)
def ascii_from_image(image: Image.Image, size: int = 128) -> str: def ascii_from_image(image: Image.Image, size: int = 128) -> str:
@ -38,6 +39,7 @@ def generate_image(
text: str, text: str,
seed: int, seed: int,
grid_size: int, grid_size: int,
top_k: int,
image_path: str, image_path: str,
models_root: str models_root: str
): ):
@ -48,7 +50,13 @@ def generate_image(
is_verbose=True is_verbose=True
) )
image = model.generate_image(text, seed, grid_size, is_verbose=True) image = model.generate_image(
text,
seed,
grid_size,
top_k=top_k,
is_verbose=True
)
save_image(image, image_path) save_image(image, image_path)
print(ascii_from_image(image, size=128)) print(ascii_from_image(image, size=128))
@ -61,6 +69,7 @@ if __name__ == '__main__':
text=args.text, text=args.text,
seed=args.seed, seed=args.seed,
grid_size=args.grid_size, grid_size=args.grid_size,
top_k=args.top_k,
image_path=args.image_path, image_path=args.image_path,
models_root=args.models_root models_root=args.models_root
) )

View File

@ -177,8 +177,9 @@ class MinDalle:
seed: int, seed: int,
image_count: int, image_count: int,
log2_mid_count: int, log2_mid_count: int,
log2_k: int = 6, temperature: float = 1,
log2_supercondition_factor: int = 3, top_k: int = 256,
supercondition_factor: int = 16,
is_verbose: bool = False is_verbose: bool = False
) -> Iterator[FloatTensor]: ) -> Iterator[FloatTensor]:
assert(log2_mid_count in range(5)) assert(log2_mid_count in range(5))
@ -206,10 +207,10 @@ class MinDalle:
with torch.cuda.amp.autocast(dtype=self.dtype): with torch.cuda.amp.autocast(dtype=self.dtype):
encoder_state, attention_mask, attention_state, image_tokens = ( encoder_state, attention_mask, attention_state, image_tokens = (
self.decoder.decode_initial( self.decoder.decode_initial(
seed, seed=seed,
image_count, image_count=image_count,
text_tokens, text_tokens=text_tokens,
encoder_state encoder_state=encoder_state
) )
) )
@ -220,12 +221,13 @@ class MinDalle:
with torch.cuda.amp.autocast(dtype=self.dtype): with torch.cuda.amp.autocast(dtype=self.dtype):
attention_state, image_tokens = self.decoder.decode_row( attention_state, image_tokens = self.decoder.decode_row(
row_index, row_index,
log2_k, temperature=temperature,
log2_supercondition_factor, top_k=top_k,
encoder_state, supercondition_factor=supercondition_factor,
attention_mask, encoder_state=encoder_state,
attention_state, attention_mask=attention_mask,
image_tokens attention_state=attention_state,
image_tokens_sequence=image_tokens
) )
with torch.cuda.amp.autocast(dtype=torch.float32): with torch.cuda.amp.autocast(dtype=torch.float32):
if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0: if ((row_index + 1) * (2 ** log2_mid_count)) % row_count == 0:
@ -240,18 +242,20 @@ class MinDalle:
seed: int, seed: int,
grid_size: int, grid_size: int,
log2_mid_count: int, log2_mid_count: int,
log2_k: int = 6, temperature: float = 1,
log2_supercondition_factor: int = 3, top_k: int = 256,
supercondition_factor: int = 16,
is_verbose: bool = False is_verbose: bool = False
) -> Iterator[Image.Image]: ) -> Iterator[Image.Image]:
images_stream = self.generate_images_stream( images_stream = self.generate_images_stream(
text, text=text,
seed, seed=seed,
grid_size ** 2, image_count=grid_size ** 2,
log2_mid_count, log2_mid_count=log2_mid_count,
log2_k, temperature=temperature,
log2_supercondition_factor, top_k=top_k,
is_verbose supercondition_factor=supercondition_factor,
is_verbose=is_verbose
) )
for images in images_stream: for images in images_stream:
yield self.grid_from_images(images) yield self.grid_from_images(images)
@ -262,19 +266,21 @@ class MinDalle:
text: str, text: str,
seed: int = -1, seed: int = -1,
image_count: int = 1, image_count: int = 1,
log2_k: int = 6, temperature: float = 1,
log2_supercondition_factor: int = 3, top_k: int = 1024,
supercondition_factor: int = 16,
is_verbose: bool = False is_verbose: bool = False
) -> FloatTensor: ) -> FloatTensor:
log2_mid_count = 0 log2_mid_count = 0
images_stream = self.generate_images_stream( images_stream = self.generate_images_stream(
text, text=text,
seed, seed=seed,
image_count, image_count=image_count,
log2_mid_count, temperature=temperature,
log2_k, log2_mid_count=log2_mid_count,
log2_supercondition_factor, top_k=top_k,
is_verbose supercondition_factor=supercondition_factor,
is_verbose=is_verbose
) )
return next(images_stream) return next(images_stream)
@ -284,18 +290,20 @@ class MinDalle:
text: str, text: str,
seed: int = -1, seed: int = -1,
grid_size: int = 1, grid_size: int = 1,
log2_k: int = 6, temperature: float = 1,
log2_supercondition_factor: int = 3, top_k: int = 1024,
supercondition_factor: int = 16,
is_verbose: bool = False is_verbose: bool = False
) -> Image.Image: ) -> Image.Image:
log2_mid_count = 0 log2_mid_count = 0
image_stream = self.generate_image_stream( image_stream = self.generate_image_stream(
text, text=text,
seed, seed=seed,
grid_size, grid_size=grid_size,
log2_mid_count, log2_mid_count=log2_mid_count,
log2_k, temperature=temperature,
log2_supercondition_factor, top_k=top_k,
is_verbose supercondition_factor=supercondition_factor,
is_verbose=is_verbose
) )
return next(image_stream) return next(image_stream)

View File

@ -140,8 +140,9 @@ class DalleBartDecoder(nn.Module):
def decode_step( def decode_step(
self, self,
log2_k: int, temperature: float,
log2_supercondition_factor: int, top_k: int,
supercondition_factor: int,
attention_mask: BoolTensor, attention_mask: BoolTensor,
encoder_state: FloatTensor, encoder_state: FloatTensor,
attention_state: FloatTensor, attention_state: FloatTensor,
@ -166,18 +167,17 @@ class DalleBartDecoder(nn.Module):
) )
decoder_state = self.final_ln(decoder_state) decoder_state = self.final_ln(decoder_state)
logits = self.lm_head(decoder_state) logits = self.lm_head(decoder_state)
a = 2 ** log2_supercondition_factor a = supercondition_factor
logits: FloatTensor = ( logits: FloatTensor = (
logits[:image_count, -1] * (1 - a) + logits[:image_count, -1] * (1 - a) +
logits[image_count:, -1] * a logits[image_count:, -1] * a
) )
top_logits, _ = logits.topk(2 ** log2_k, dim=-1) top_logits, _ = logits.topk(top_k, dim=-1)
probs = torch.where( is_kept = logits >= top_logits[:, [-1]]
logits < top_logits[:, [-1]], logits -= top_logits[:, [0]]
self.zero_prob, logits /= max(temperature, 1e-6)
torch.exp(logits - top_logits[:, [0]]) probs = torch.where(is_kept, torch.exp(logits), self.zero_prob)
)
probs[:, 2 ** 14:] = 0 # vqgan vocab_count is only 2 ** 14 probs[:, 2 ** 14:] = 0 # vqgan vocab_count is only 2 ** 14
return probs, attention_state return probs, attention_state
@ -185,8 +185,9 @@ class DalleBartDecoder(nn.Module):
def decode_row( def decode_row(
self, self,
row_index: int, row_index: int,
log2_k: int, temperature: float,
log2_supercondition_factor: int, top_k: int,
supercondition_factor: int,
encoder_state: FloatTensor, encoder_state: FloatTensor,
attention_mask: BoolTensor, attention_mask: BoolTensor,
attention_state: FloatTensor, attention_state: FloatTensor,
@ -195,8 +196,9 @@ class DalleBartDecoder(nn.Module):
for col_index in range(16): for col_index in range(16):
i = 16 * row_index + col_index i = 16 * row_index + col_index
probs, attention_state = self.decode_step( probs, attention_state = self.decode_step(
log2_k = log2_k, temperature = temperature,
log2_supercondition_factor = log2_supercondition_factor, top_k = top_k,
supercondition_factor = supercondition_factor,
attention_mask = attention_mask, attention_mask = attention_mask,
encoder_state = encoder_state, encoder_state = encoder_state,
attention_state = attention_state, attention_state = attention_state,

View File

@ -5,7 +5,7 @@ setuptools.setup(
name='min-dalle', name='min-dalle',
description = 'min(DALL·E)', description = 'min(DALL·E)',
# long_description=(Path(__file__).parent / "README.rst").read_text(), # long_description=(Path(__file__).parent / "README.rst").read_text(),
version='0.3.11', version='0.3.12',
author='Brett Kuprel', author='Brett Kuprel',
author_email='brkuprel@gmail.com', author_email='brkuprel@gmail.com',
url='https://github.com/kuprel/min-dalle', url='https://github.com/kuprel/min-dalle',