added is_verbose flag
This commit is contained in:
parent
35e97768a5
commit
cf9656baa2
|
@ -44,7 +44,8 @@ def generate_image(
|
|||
is_mega=is_mega,
|
||||
models_root='pretrained',
|
||||
is_reusable=False,
|
||||
sample_token_count=token_count
|
||||
sample_token_count=token_count,
|
||||
is_verbose=True
|
||||
)
|
||||
|
||||
if token_count < 256:
|
||||
|
|
|
@ -21,11 +21,12 @@ class MinDalle:
|
|||
is_mega: bool,
|
||||
is_reusable: bool = True,
|
||||
models_root: str = 'pretrained',
|
||||
sample_token_count: int = 256
|
||||
sample_token_count: int = 256,
|
||||
is_verbose = True
|
||||
):
|
||||
print("initializing MinDalleTorch")
|
||||
self.is_mega = is_mega
|
||||
self.is_reusable = is_reusable
|
||||
self.is_verbose = is_verbose
|
||||
self.sample_token_count = sample_token_count
|
||||
self.batch_count = 2
|
||||
self.text_token_count = 64
|
||||
|
@ -37,6 +38,7 @@ class MinDalle:
|
|||
self.text_vocab_count = 50272 if is_mega else 50264
|
||||
self.image_vocab_count = 16415 if is_mega else 16384
|
||||
|
||||
if self.is_verbose: print("initializing MinDalle")
|
||||
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
||||
dalle_path = os.path.join(models_root, model_name)
|
||||
vqgan_path = os.path.join(models_root, 'vqgan')
|
||||
|
@ -56,7 +58,7 @@ class MinDalle:
|
|||
|
||||
|
||||
def download_tokenizer(self):
|
||||
print("downloading tokenizer params")
|
||||
if self.is_verbose: print("downloading tokenizer params")
|
||||
suffix = '' if self.is_mega else '_mini'
|
||||
vocab = requests.get(MIN_DALLE_REPO + 'vocab{}.json'.format(suffix))
|
||||
merges = requests.get(MIN_DALLE_REPO + 'merges{}.txt'.format(suffix))
|
||||
|
@ -65,21 +67,21 @@ class MinDalle:
|
|||
|
||||
|
||||
def download_encoder(self):
|
||||
print("downloading encoder params")
|
||||
if self.is_verbose: print("downloading encoder params")
|
||||
suffix = '' if self.is_mega else '_mini'
|
||||
params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix))
|
||||
with open(self.encoder_params_path, 'wb') as f: f.write(params.content)
|
||||
|
||||
|
||||
def download_decoder(self):
|
||||
print("downloading decoder params")
|
||||
if self.is_verbose: print("downloading decoder params")
|
||||
suffix = '' if self.is_mega else '_mini'
|
||||
params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix))
|
||||
with open(self.decoder_params_path, 'wb') as f: f.write(params.content)
|
||||
|
||||
|
||||
def download_detokenizer(self):
|
||||
print("downloading detokenizer params")
|
||||
if self.is_verbose: print("downloading detokenizer params")
|
||||
params = requests.get(MIN_DALLE_REPO + 'detoker.pt')
|
||||
with open(self.detoker_params_path, 'wb') as f: f.write(params.content)
|
||||
|
||||
|
@ -88,18 +90,18 @@ class MinDalle:
|
|||
is_downloaded = os.path.exists(self.vocab_path)
|
||||
is_downloaded &= os.path.exists(self.merges_path)
|
||||
if not is_downloaded: self.download_tokenizer()
|
||||
print("intializing TextTokenizer")
|
||||
if self.is_verbose: print("intializing TextTokenizer")
|
||||
with open(self.vocab_path, 'r', encoding='utf8') as f:
|
||||
vocab = json.load(f)
|
||||
with open(self.merges_path, 'r', encoding='utf8') as f:
|
||||
merges = f.read().split("\n")[1:-1]
|
||||
self.tokenizer = TextTokenizer(vocab, merges)
|
||||
self.tokenizer = TextTokenizer(vocab, merges, is_verbose=self.is_verbose)
|
||||
|
||||
|
||||
def init_encoder(self):
|
||||
is_downloaded = os.path.exists(self.encoder_params_path)
|
||||
if not is_downloaded: self.download_encoder()
|
||||
print("initializing DalleBartEncoderTorch")
|
||||
if self.is_verbose: print("initializing DalleBartEncoder")
|
||||
self.encoder = DalleBartEncoder(
|
||||
attention_head_count = self.attention_head_count,
|
||||
embed_count = self.embed_count,
|
||||
|
@ -117,7 +119,7 @@ class MinDalle:
|
|||
def init_decoder(self):
|
||||
is_downloaded = os.path.exists(self.decoder_params_path)
|
||||
if not is_downloaded: self.download_decoder()
|
||||
print("initializing DalleBartDecoderTorch")
|
||||
if self.is_verbose: print("initializing DalleBartDecoder")
|
||||
self.decoder = DalleBartDecoder(
|
||||
sample_token_count = self.sample_token_count,
|
||||
image_token_count = self.image_token_count,
|
||||
|
@ -138,7 +140,7 @@ class MinDalle:
|
|||
def init_detokenizer(self):
|
||||
is_downloaded = os.path.exists(self.detoker_params_path)
|
||||
if not is_downloaded: self.download_detokenizer()
|
||||
print("initializing VQGanDetokenizer")
|
||||
if self.is_verbose: print("initializing VQGanDetokenizer")
|
||||
self.detokenizer = VQGanDetokenizer()
|
||||
params = torch.load(self.detoker_params_path)
|
||||
self.detokenizer.load_state_dict(params)
|
||||
|
@ -147,9 +149,9 @@ class MinDalle:
|
|||
|
||||
|
||||
def generate_image_tokens(self, text: str, seed: int) -> LongTensor:
|
||||
print("tokenizing text")
|
||||
if self.is_verbose: print("tokenizing text")
|
||||
tokens = self.tokenizer.tokenize(text)
|
||||
print("text tokens", tokens)
|
||||
if self.is_verbose: print("text tokens", tokens)
|
||||
text_tokens = numpy.ones((2, 64), dtype=numpy.int32)
|
||||
text_tokens[0, :2] = [tokens[0], tokens[-1]]
|
||||
text_tokens[1, :len(tokens)] = tokens
|
||||
|
@ -158,12 +160,12 @@ class MinDalle:
|
|||
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
||||
|
||||
if not self.is_reusable: self.init_encoder()
|
||||
print("encoding text tokens")
|
||||
if self.is_verbose: print("encoding text tokens")
|
||||
encoder_state = self.encoder.forward(text_tokens)
|
||||
if not self.is_reusable: del self.encoder
|
||||
|
||||
if not self.is_reusable: self.init_decoder()
|
||||
print("sampling image tokens")
|
||||
if self.is_verbose: print("sampling image tokens")
|
||||
if seed < 0: seed = random.randint(0, 2 ** 31)
|
||||
torch.manual_seed(seed)
|
||||
image_tokens = self.decoder.forward(text_tokens, encoder_state)
|
||||
|
@ -174,7 +176,7 @@ class MinDalle:
|
|||
def generate_image(self, text: str, seed: int) -> Image.Image:
|
||||
image_tokens = self.generate_image_tokens(text, seed)
|
||||
if not self.is_reusable: self.init_detokenizer()
|
||||
print("detokenizing image")
|
||||
if self.is_verbose: print("detokenizing image")
|
||||
image = self.detokenizer.forward(image_tokens).to(torch.uint8)
|
||||
if not self.is_reusable: del self.detokenizer
|
||||
image = Image.fromarray(image.to('cpu').detach().numpy())
|
||||
|
|
|
@ -3,7 +3,8 @@ from typing import List, Tuple
|
|||
|
||||
|
||||
class TextTokenizer:
|
||||
def __init__(self, vocab: dict, merges: List[str]):
|
||||
def __init__(self, vocab: dict, merges: List[str], is_verbose: bool = True):
|
||||
self.is_verbose = is_verbose
|
||||
self.token_from_subword = vocab
|
||||
pairs = [tuple(pair.split()) for pair in merges]
|
||||
self.rank_from_pair = dict(zip(pairs, range(len(pairs))))
|
||||
|
@ -36,5 +37,5 @@ class TextTokenizer:
|
|||
(subwords[i + 2:] if i + 2 < len(subwords) else [])
|
||||
)
|
||||
|
||||
print(subwords)
|
||||
if self.is_verbose: print(subwords)
|
||||
return subwords
|
Loading…
Reference in New Issue
Block a user