update readme
This commit is contained in:
parent
24162ee717
commit
c36ffae9c3
15
README.md
vendored
15
README.md
vendored
|
@ -53,6 +53,21 @@ display(image)
|
|||
<img src="https://github.com/kuprel/min-dalle/raw/main/examples/nuclear_broccoli.jpg" alt="min-dalle" width="400"/>
|
||||
credit: https://twitter.com/hardmaru/status/1544354119527596034
|
||||
|
||||
The images can also be generated as a `FloatTensor` in case you want to process them manually (e.g. save individual images).
|
||||
|
||||
```python
|
||||
images = model.generate_images(
|
||||
text='Nuclear explosion broccoli',
|
||||
seed=-1,
|
||||
image_count=7,
|
||||
log2_k=6,
|
||||
log2_supercondition_factor=5,
|
||||
is_verbose=False
|
||||
)
|
||||
```
|
||||
|
||||
Note: you will have to move the images to the cpu and convert to numpy, e.g. `images = images.to('cpu').detach().numpy()`. Then image $i$ can be coverted to a PIL.Image `image = Image.fromarray(images[i])`, and saved with its `save` method `image.save('image.png')`.
|
||||
|
||||
### Interactive
|
||||
|
||||
If the model is being used interactively (e.g. in a notebook) `generate_image_stream` can be used to generate a stream of images as the model is decoding. The detokenizer adds a slight delay for each image. Setting `log2_mid_count` to 3 results in a total of `2 ** 3 = 8` generated images. The only valid values for `log2_mid_count` are 0, 1, 2, 3, and 4. This is implemented in the colab.
|
||||
|
|
Loading…
Reference in New Issue
Block a user