added to pypi
This commit is contained in:
parent
f0c8f258e9
commit
be2beca7c0
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -10,3 +10,7 @@
|
||||||
**/generated
|
**/generated
|
||||||
**/pretrained
|
**/pretrained
|
||||||
**/*.msgpack
|
**/*.msgpack
|
||||||
|
*.egg-info/
|
||||||
|
*.egg
|
||||||
|
dist
|
||||||
|
build
|
||||||
|
|
6
README.md
vendored
6
README.md
vendored
|
@ -9,14 +9,16 @@ It currently takes **7.4 seconds** to generate an image with DALL·E Mega with P
|
||||||
|
|
||||||
The flax model, and the code for coverting it to torch, have been moved [here](https://github.com/kuprel/min-dalle-flax).
|
The flax model, and the code for coverting it to torch, have been moved [here](https://github.com/kuprel/min-dalle-flax).
|
||||||
|
|
||||||
### Setup
|
### Install
|
||||||
|
|
||||||
Run `sh setup.sh` to install dependencies and download pretrained models. The torch models can be manually downloaded [here](https://huggingface.co/kuprel/min-dalle/tree/main).
|
```$ pip install min-dalle```
|
||||||
|
|
||||||
### Usage
|
### Usage
|
||||||
|
|
||||||
Use the python script `image_from_text.py` to generate images from the command line. Note: the command line script loads the models and parameters each time. To load a model once and generate multiple times, initialize `MinDalleTorch`, then call `generate_image` with some text and a seed. See the colab for an example.
|
Use the python script `image_from_text.py` to generate images from the command line. Note: the command line script loads the models and parameters each time. To load a model once and generate multiple times, initialize `MinDalleTorch`, then call `generate_image` with some text and a seed. See the colab for an example.
|
||||||
|
|
||||||
|
Model parameters will be downloaded as needed to the directory specified. The models can also be manually downloaded [here](https://huggingface.co/kuprel/min-dalle/tree/main).
|
||||||
|
|
||||||
### Examples
|
### Examples
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
|
@ -39,8 +39,12 @@ def generate_image(
|
||||||
image_path: str,
|
image_path: str,
|
||||||
token_count: int
|
token_count: int
|
||||||
):
|
):
|
||||||
is_reusable = False
|
model = MinDalleTorch(
|
||||||
model = MinDalleTorch(is_mega, is_reusable, token_count)
|
is_mega=is_mega,
|
||||||
|
models_root='pretrained',
|
||||||
|
is_reusable=False,
|
||||||
|
sample_token_count=token_count
|
||||||
|
)
|
||||||
|
|
||||||
if token_count < 256:
|
if token_count < 256:
|
||||||
image_tokens = model.generate_image_tokens(text, seed)
|
image_tokens = model.generate_image_tokens(text, seed)
|
||||||
|
|
26
min_dalle.ipynb
vendored
26
min_dalle.ipynb
vendored
File diff suppressed because one or more lines are too long
|
@ -5,23 +5,29 @@ import numpy
|
||||||
from torch import LongTensor
|
from torch import LongTensor
|
||||||
import torch
|
import torch
|
||||||
import json
|
import json
|
||||||
|
import requests
|
||||||
torch.set_grad_enabled(False)
|
torch.set_grad_enabled(False)
|
||||||
torch.set_num_threads(os.cpu_count())
|
torch.set_num_threads(os.cpu_count())
|
||||||
|
|
||||||
from .text_tokenizer import TextTokenizer
|
MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
|
||||||
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
|
|
||||||
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
|
|
||||||
from .models.vqgan_detokenizer import VQGanDetokenizer
|
|
||||||
|
|
||||||
|
from .text_tokenizer import TextTokenizer
|
||||||
|
from .models import (
|
||||||
|
DalleBartEncoderTorch,
|
||||||
|
DalleBartDecoderTorch,
|
||||||
|
VQGanDetokenizer
|
||||||
|
)
|
||||||
|
|
||||||
class MinDalleTorch:
|
class MinDalleTorch:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
is_mega: bool,
|
is_mega: bool,
|
||||||
is_reusable: bool = True,
|
is_reusable: bool = True,
|
||||||
|
models_root: str = 'pretrained',
|
||||||
sample_token_count: int = 256
|
sample_token_count: int = 256
|
||||||
):
|
):
|
||||||
print("initializing MinDalleTorch")
|
print("initializing MinDalleTorch")
|
||||||
|
self.is_mega = is_mega
|
||||||
self.is_reusable = is_reusable
|
self.is_reusable = is_reusable
|
||||||
self.sample_token_count = sample_token_count
|
self.sample_token_count = sample_token_count
|
||||||
self.batch_count = 2
|
self.batch_count = 2
|
||||||
|
@ -35,10 +41,15 @@ class MinDalleTorch:
|
||||||
self.image_vocab_count = 16415 if is_mega else 16384
|
self.image_vocab_count = 16415 if is_mega else 16384
|
||||||
|
|
||||||
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
||||||
self.model_path = os.path.join('pretrained', model_name)
|
dalle_path = os.path.join(models_root, model_name)
|
||||||
self.encoder_params_path = os.path.join(self.model_path, 'encoder.pt')
|
vqgan_path = os.path.join(models_root, 'vqgan')
|
||||||
self.decoder_params_path = os.path.join(self.model_path, 'decoder.pt')
|
if not os.path.exists(dalle_path): os.makedirs(dalle_path)
|
||||||
self.detoker_params_path = os.path.join('pretrained', 'vqgan', 'detoker.pt')
|
if not os.path.exists(vqgan_path): os.makedirs(vqgan_path)
|
||||||
|
self.vocab_path = os.path.join(dalle_path, 'vocab.json')
|
||||||
|
self.merges_path = os.path.join(dalle_path, 'merges.txt')
|
||||||
|
self.encoder_params_path = os.path.join(dalle_path, 'encoder.pt')
|
||||||
|
self.decoder_params_path = os.path.join(dalle_path, 'decoder.pt')
|
||||||
|
self.detoker_params_path = os.path.join(vqgan_path, 'detoker.pt')
|
||||||
|
|
||||||
self.init_tokenizer()
|
self.init_tokenizer()
|
||||||
if is_reusable:
|
if is_reusable:
|
||||||
|
@ -46,18 +57,51 @@ class MinDalleTorch:
|
||||||
self.init_decoder()
|
self.init_decoder()
|
||||||
self.init_detokenizer()
|
self.init_detokenizer()
|
||||||
|
|
||||||
|
|
||||||
|
def download_tokenizer(self):
|
||||||
|
print("downloading tokenizer params")
|
||||||
|
suffix = '' if self.is_mega else '_mini'
|
||||||
|
vocab = requests.get(MIN_DALLE_REPO + 'vocab{}.json'.format(suffix))
|
||||||
|
merges = requests.get(MIN_DALLE_REPO + 'merges{}.txt'.format(suffix))
|
||||||
|
with open(self.vocab_path, 'wb') as f: f.write(vocab.content)
|
||||||
|
with open(self.merges_path, 'wb') as f: f.write(merges.content)
|
||||||
|
|
||||||
|
|
||||||
|
def download_encoder(self):
|
||||||
|
print("downloading encoder params")
|
||||||
|
suffix = '' if self.is_mega else '_mini'
|
||||||
|
params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix))
|
||||||
|
with open(self.encoder_params_path, 'wb') as f: f.write(params.content)
|
||||||
|
|
||||||
|
|
||||||
|
def download_decoder(self):
|
||||||
|
print("downloading decoder params")
|
||||||
|
suffix = '' if self.is_mega else '_mini'
|
||||||
|
params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix))
|
||||||
|
with open(self.decoder_params_path, 'wb') as f: f.write(params.content)
|
||||||
|
|
||||||
|
|
||||||
|
def download_detokenizer(self):
|
||||||
|
print("downloading detokenizer params")
|
||||||
|
params = requests.get(MIN_DALLE_REPO + 'detoker.pt')
|
||||||
|
with open(self.detoker_params_path, 'wb') as f: f.write(params.content)
|
||||||
|
|
||||||
|
|
||||||
def init_tokenizer(self):
|
def init_tokenizer(self):
|
||||||
print("reading files from {}".format(self.model_path))
|
is_downloaded = os.path.exists(self.vocab_path)
|
||||||
vocab_path = os.path.join(self.model_path, 'vocab.json')
|
is_downloaded &= os.path.exists(self.merges_path)
|
||||||
merges_path = os.path.join(self.model_path, 'merges.txt')
|
if not is_downloaded: self.download_tokenizer()
|
||||||
with open(vocab_path, 'r', encoding='utf8') as f:
|
print("intializing TextTokenizer")
|
||||||
|
with open(self.vocab_path, 'r', encoding='utf8') as f:
|
||||||
vocab = json.load(f)
|
vocab = json.load(f)
|
||||||
with open(merges_path, 'r', encoding='utf8') as f:
|
with open(self.merges_path, 'r', encoding='utf8') as f:
|
||||||
merges = f.read().split("\n")[1:-1]
|
merges = f.read().split("\n")[1:-1]
|
||||||
self.tokenizer = TextTokenizer(vocab, merges)
|
self.tokenizer = TextTokenizer(vocab, merges)
|
||||||
|
|
||||||
|
|
||||||
def init_encoder(self):
|
def init_encoder(self):
|
||||||
|
is_downloaded = os.path.exists(self.encoder_params_path)
|
||||||
|
if not is_downloaded: self.download_encoder()
|
||||||
print("initializing DalleBartEncoderTorch")
|
print("initializing DalleBartEncoderTorch")
|
||||||
self.encoder = DalleBartEncoderTorch(
|
self.encoder = DalleBartEncoderTorch(
|
||||||
attention_head_count = self.attention_head_count,
|
attention_head_count = self.attention_head_count,
|
||||||
|
@ -74,6 +118,8 @@ class MinDalleTorch:
|
||||||
|
|
||||||
|
|
||||||
def init_decoder(self):
|
def init_decoder(self):
|
||||||
|
is_downloaded = os.path.exists(self.decoder_params_path)
|
||||||
|
if not is_downloaded: self.download_decoder()
|
||||||
print("initializing DalleBartDecoderTorch")
|
print("initializing DalleBartDecoderTorch")
|
||||||
self.decoder = DalleBartDecoderTorch(
|
self.decoder = DalleBartDecoderTorch(
|
||||||
sample_token_count = self.sample_token_count,
|
sample_token_count = self.sample_token_count,
|
||||||
|
@ -93,6 +139,8 @@ class MinDalleTorch:
|
||||||
|
|
||||||
|
|
||||||
def init_detokenizer(self):
|
def init_detokenizer(self):
|
||||||
|
is_downloaded = os.path.exists(self.detoker_params_path)
|
||||||
|
if not is_downloaded: self.download_detokenizer()
|
||||||
print("initializing VQGanDetokenizer")
|
print("initializing VQGanDetokenizer")
|
||||||
self.detokenizer = VQGanDetokenizer()
|
self.detokenizer = VQGanDetokenizer()
|
||||||
params = torch.load(self.detoker_params_path)
|
params = torch.load(self.detoker_params_path)
|
||||||
|
|
3
min_dalle/models/__init__.py
Normal file
3
min_dalle/models/__init__.py
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
from .dalle_bart_encoder_torch import DalleBartEncoderTorch
|
||||||
|
from .dalle_bart_decoder_torch import DalleBartDecoderTorch
|
||||||
|
from .vqgan_detokenizer import VQGanDetokenizer
|
3
requirements.txt
vendored
3
requirements.txt
vendored
|
@ -1,2 +1 @@
|
||||||
torch==1.12.0
|
min-dalle
|
||||||
typing_extensions==4.3.0
|
|
||||||
|
|
23
setup.py
Normal file
23
setup.py
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
import setuptools
|
||||||
|
|
||||||
|
setuptools.setup(
|
||||||
|
name='min-dalle',
|
||||||
|
description = 'min(DALL·E)',
|
||||||
|
version='0.1.4',
|
||||||
|
author='Brett Kuprel',
|
||||||
|
author_email = 'brkuprel@gmail.com',
|
||||||
|
packages=[
|
||||||
|
'min_dalle',
|
||||||
|
'min_dalle.models'
|
||||||
|
],
|
||||||
|
license='MIT',
|
||||||
|
install_requires=[
|
||||||
|
'torch>=1.11.0',
|
||||||
|
'typing_extensions>=4.1.0'
|
||||||
|
],
|
||||||
|
keywords = [
|
||||||
|
'artificial intelligence',
|
||||||
|
'deep learning',
|
||||||
|
'text to image'
|
||||||
|
]
|
||||||
|
)
|
25
setup.sh
vendored
25
setup.sh
vendored
|
@ -1,25 +0,0 @@
|
||||||
#!/bin/bash
|
|
||||||
|
|
||||||
set -e
|
|
||||||
|
|
||||||
pip3 install -r requirements.txt
|
|
||||||
|
|
||||||
repo_path="https://huggingface.co/kuprel/min-dalle/resolve/main"
|
|
||||||
|
|
||||||
mini_path="./pretrained/dalle_bart_mini"
|
|
||||||
mega_path="./pretrained/dalle_bart_mega"
|
|
||||||
vqgan_path="./pretrained/vqgan"
|
|
||||||
|
|
||||||
mkdir -p ${vqgan_path}
|
|
||||||
mkdir -p ${mini_path}
|
|
||||||
mkdir -p ${mega_path}
|
|
||||||
|
|
||||||
curl ${repo_path}/detoker.pt -L --output ${vqgan_path}/detoker.pt
|
|
||||||
curl ${repo_path}/vocab_mini.json -L --output ${mini_path}/vocab.json
|
|
||||||
curl ${repo_path}/merges_mini.txt -L --output ${mini_path}/merges.txt
|
|
||||||
curl ${repo_path}/encoder_mini.pt -L --output ${mini_path}/encoder.pt
|
|
||||||
curl ${repo_path}/decoder_mini.pt -L --output ${mini_path}/decoder.pt
|
|
||||||
curl ${repo_path}/vocab.json -L --output ${mega_path}/vocab.json
|
|
||||||
curl ${repo_path}/merges.txt -L --output ${mega_path}/merges.txt
|
|
||||||
curl ${repo_path}/encoder.pt -L --output ${mega_path}/encoder.pt
|
|
||||||
curl ${repo_path}/decoder.pt -L --output ${mega_path}/decoder.pt
|
|
Loading…
Reference in New Issue
Block a user