added to pypi

This commit is contained in:
Brett Kuprel 2022-07-01 18:16:55 -04:00
parent f0c8f258e9
commit be2beca7c0
9 changed files with 116 additions and 58 deletions

4
.gitignore vendored
View File

@ -10,3 +10,7 @@
**/generated **/generated
**/pretrained **/pretrained
**/*.msgpack **/*.msgpack
*.egg-info/
*.egg
dist
build

6
README.md vendored
View File

@ -9,14 +9,16 @@ It currently takes **7.4 seconds** to generate an image with DALL·E Mega with P
The flax model, and the code for coverting it to torch, have been moved [here](https://github.com/kuprel/min-dalle-flax). The flax model, and the code for coverting it to torch, have been moved [here](https://github.com/kuprel/min-dalle-flax).
### Setup ### Install
Run `sh setup.sh` to install dependencies and download pretrained models. The torch models can be manually downloaded [here](https://huggingface.co/kuprel/min-dalle/tree/main). ```$ pip install min-dalle```
### Usage ### Usage
Use the python script `image_from_text.py` to generate images from the command line. Note: the command line script loads the models and parameters each time. To load a model once and generate multiple times, initialize `MinDalleTorch`, then call `generate_image` with some text and a seed. See the colab for an example. Use the python script `image_from_text.py` to generate images from the command line. Note: the command line script loads the models and parameters each time. To load a model once and generate multiple times, initialize `MinDalleTorch`, then call `generate_image` with some text and a seed. See the colab for an example.
Model parameters will be downloaded as needed to the directory specified. The models can also be manually downloaded [here](https://huggingface.co/kuprel/min-dalle/tree/main).
### Examples ### Examples
``` ```

View File

@ -39,8 +39,12 @@ def generate_image(
image_path: str, image_path: str,
token_count: int token_count: int
): ):
is_reusable = False model = MinDalleTorch(
model = MinDalleTorch(is_mega, is_reusable, token_count) is_mega=is_mega,
models_root='pretrained',
is_reusable=False,
sample_token_count=token_count
)
if token_count < 256: if token_count < 256:
image_tokens = model.generate_image_tokens(text, seed) image_tokens = model.generate_image_tokens(text, seed)

24
min_dalle.ipynb vendored

File diff suppressed because one or more lines are too long

View File

@ -5,23 +5,29 @@ import numpy
from torch import LongTensor from torch import LongTensor
import torch import torch
import json import json
import requests
torch.set_grad_enabled(False) torch.set_grad_enabled(False)
torch.set_num_threads(os.cpu_count()) torch.set_num_threads(os.cpu_count())
from .text_tokenizer import TextTokenizer MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/'
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
from .models.vqgan_detokenizer import VQGanDetokenizer
from .text_tokenizer import TextTokenizer
from .models import (
DalleBartEncoderTorch,
DalleBartDecoderTorch,
VQGanDetokenizer
)
class MinDalleTorch: class MinDalleTorch:
def __init__( def __init__(
self, self,
is_mega: bool, is_mega: bool,
is_reusable: bool = True, is_reusable: bool = True,
models_root: str = 'pretrained',
sample_token_count: int = 256 sample_token_count: int = 256
): ):
print("initializing MinDalleTorch") print("initializing MinDalleTorch")
self.is_mega = is_mega
self.is_reusable = is_reusable self.is_reusable = is_reusable
self.sample_token_count = sample_token_count self.sample_token_count = sample_token_count
self.batch_count = 2 self.batch_count = 2
@ -35,10 +41,15 @@ class MinDalleTorch:
self.image_vocab_count = 16415 if is_mega else 16384 self.image_vocab_count = 16415 if is_mega else 16384
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini') model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
self.model_path = os.path.join('pretrained', model_name) dalle_path = os.path.join(models_root, model_name)
self.encoder_params_path = os.path.join(self.model_path, 'encoder.pt') vqgan_path = os.path.join(models_root, 'vqgan')
self.decoder_params_path = os.path.join(self.model_path, 'decoder.pt') if not os.path.exists(dalle_path): os.makedirs(dalle_path)
self.detoker_params_path = os.path.join('pretrained', 'vqgan', 'detoker.pt') if not os.path.exists(vqgan_path): os.makedirs(vqgan_path)
self.vocab_path = os.path.join(dalle_path, 'vocab.json')
self.merges_path = os.path.join(dalle_path, 'merges.txt')
self.encoder_params_path = os.path.join(dalle_path, 'encoder.pt')
self.decoder_params_path = os.path.join(dalle_path, 'decoder.pt')
self.detoker_params_path = os.path.join(vqgan_path, 'detoker.pt')
self.init_tokenizer() self.init_tokenizer()
if is_reusable: if is_reusable:
@ -46,18 +57,51 @@ class MinDalleTorch:
self.init_decoder() self.init_decoder()
self.init_detokenizer() self.init_detokenizer()
def download_tokenizer(self):
print("downloading tokenizer params")
suffix = '' if self.is_mega else '_mini'
vocab = requests.get(MIN_DALLE_REPO + 'vocab{}.json'.format(suffix))
merges = requests.get(MIN_DALLE_REPO + 'merges{}.txt'.format(suffix))
with open(self.vocab_path, 'wb') as f: f.write(vocab.content)
with open(self.merges_path, 'wb') as f: f.write(merges.content)
def download_encoder(self):
print("downloading encoder params")
suffix = '' if self.is_mega else '_mini'
params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix))
with open(self.encoder_params_path, 'wb') as f: f.write(params.content)
def download_decoder(self):
print("downloading decoder params")
suffix = '' if self.is_mega else '_mini'
params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix))
with open(self.decoder_params_path, 'wb') as f: f.write(params.content)
def download_detokenizer(self):
print("downloading detokenizer params")
params = requests.get(MIN_DALLE_REPO + 'detoker.pt')
with open(self.detoker_params_path, 'wb') as f: f.write(params.content)
def init_tokenizer(self): def init_tokenizer(self):
print("reading files from {}".format(self.model_path)) is_downloaded = os.path.exists(self.vocab_path)
vocab_path = os.path.join(self.model_path, 'vocab.json') is_downloaded &= os.path.exists(self.merges_path)
merges_path = os.path.join(self.model_path, 'merges.txt') if not is_downloaded: self.download_tokenizer()
with open(vocab_path, 'r', encoding='utf8') as f: print("intializing TextTokenizer")
with open(self.vocab_path, 'r', encoding='utf8') as f:
vocab = json.load(f) vocab = json.load(f)
with open(merges_path, 'r', encoding='utf8') as f: with open(self.merges_path, 'r', encoding='utf8') as f:
merges = f.read().split("\n")[1:-1] merges = f.read().split("\n")[1:-1]
self.tokenizer = TextTokenizer(vocab, merges) self.tokenizer = TextTokenizer(vocab, merges)
def init_encoder(self): def init_encoder(self):
is_downloaded = os.path.exists(self.encoder_params_path)
if not is_downloaded: self.download_encoder()
print("initializing DalleBartEncoderTorch") print("initializing DalleBartEncoderTorch")
self.encoder = DalleBartEncoderTorch( self.encoder = DalleBartEncoderTorch(
attention_head_count = self.attention_head_count, attention_head_count = self.attention_head_count,
@ -74,6 +118,8 @@ class MinDalleTorch:
def init_decoder(self): def init_decoder(self):
is_downloaded = os.path.exists(self.decoder_params_path)
if not is_downloaded: self.download_decoder()
print("initializing DalleBartDecoderTorch") print("initializing DalleBartDecoderTorch")
self.decoder = DalleBartDecoderTorch( self.decoder = DalleBartDecoderTorch(
sample_token_count = self.sample_token_count, sample_token_count = self.sample_token_count,
@ -93,6 +139,8 @@ class MinDalleTorch:
def init_detokenizer(self): def init_detokenizer(self):
is_downloaded = os.path.exists(self.detoker_params_path)
if not is_downloaded: self.download_detokenizer()
print("initializing VQGanDetokenizer") print("initializing VQGanDetokenizer")
self.detokenizer = VQGanDetokenizer() self.detokenizer = VQGanDetokenizer()
params = torch.load(self.detoker_params_path) params = torch.load(self.detoker_params_path)

View File

@ -0,0 +1,3 @@
from .dalle_bart_encoder_torch import DalleBartEncoderTorch
from .dalle_bart_decoder_torch import DalleBartDecoderTorch
from .vqgan_detokenizer import VQGanDetokenizer

3
requirements.txt vendored
View File

@ -1,2 +1 @@
torch==1.12.0 min-dalle
typing_extensions==4.3.0

23
setup.py Normal file
View File

@ -0,0 +1,23 @@
import setuptools
setuptools.setup(
name='min-dalle',
description = 'min(DALL·E)',
version='0.1.4',
author='Brett Kuprel',
author_email = 'brkuprel@gmail.com',
packages=[
'min_dalle',
'min_dalle.models'
],
license='MIT',
install_requires=[
'torch>=1.11.0',
'typing_extensions>=4.1.0'
],
keywords = [
'artificial intelligence',
'deep learning',
'text to image'
]
)

25
setup.sh vendored
View File

@ -1,25 +0,0 @@
#!/bin/bash
set -e
pip3 install -r requirements.txt
repo_path="https://huggingface.co/kuprel/min-dalle/resolve/main"
mini_path="./pretrained/dalle_bart_mini"
mega_path="./pretrained/dalle_bart_mega"
vqgan_path="./pretrained/vqgan"
mkdir -p ${vqgan_path}
mkdir -p ${mini_path}
mkdir -p ${mega_path}
curl ${repo_path}/detoker.pt -L --output ${vqgan_path}/detoker.pt
curl ${repo_path}/vocab_mini.json -L --output ${mini_path}/vocab.json
curl ${repo_path}/merges_mini.txt -L --output ${mini_path}/merges.txt
curl ${repo_path}/encoder_mini.pt -L --output ${mini_path}/encoder.pt
curl ${repo_path}/decoder_mini.pt -L --output ${mini_path}/decoder.pt
curl ${repo_path}/vocab.json -L --output ${mega_path}/vocab.json
curl ${repo_path}/merges.txt -L --output ${mega_path}/merges.txt
curl ${repo_path}/encoder.pt -L --output ${mega_path}/encoder.pt
curl ${repo_path}/decoder.pt -L --output ${mega_path}/decoder.pt