pre converting params to torch allows mega to run in standard colab runtime
This commit is contained in:
@@ -1,6 +1,5 @@
|
||||
import os
|
||||
import numpy
|
||||
from copy import deepcopy
|
||||
from typing import Dict
|
||||
from flax.traverse_util import flatten_dict
|
||||
from flax.serialization import msgpack_restore
|
||||
@@ -105,4 +104,29 @@ def convert_dalle_bart_torch_from_flax_params(
|
||||
|
||||
P['embed_tokens.weight'] = P.pop('embed_tokens.embedding')
|
||||
P['embed_positions.weight'] = P.pop('embed_positions.embedding')
|
||||
return P
|
||||
return P
|
||||
|
||||
|
||||
def convert_and_save_mega_torch_params(is_mega: bool, model_path: str):
|
||||
print("converting params to torch")
|
||||
layer_count = 24 if is_mega else 12
|
||||
flax_params = load_dalle_bart_flax_params(model_path)
|
||||
encoder_params = convert_dalle_bart_torch_from_flax_params(
|
||||
flax_params['encoder'],
|
||||
layer_count=layer_count,
|
||||
is_encoder=True
|
||||
)
|
||||
decoder_params = convert_dalle_bart_torch_from_flax_params(
|
||||
flax_params['decoder'],
|
||||
layer_count=layer_count,
|
||||
is_encoder=False
|
||||
)
|
||||
|
||||
for i in decoder_params:
|
||||
decoder_params[i] = decoder_params[i].to(torch.float16)
|
||||
|
||||
for i in encoder_params:
|
||||
encoder_params[i] = encoder_params[i].to(torch.float16)
|
||||
|
||||
torch.save(encoder_params, os.path.join(model_path, 'encoder.pt'))
|
||||
torch.save(decoder_params, os.path.join(model_path, 'decoder.pt'))
|
@@ -10,12 +10,12 @@ class MinDalleBase:
|
||||
def __init__(self, is_mega: bool):
|
||||
self.is_mega = is_mega
|
||||
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini')
|
||||
model_path = os.path.join('pretrained', model_name)
|
||||
self.model_path = os.path.join('pretrained', model_name)
|
||||
|
||||
print("reading files from {}".format(model_path))
|
||||
config_path = os.path.join(model_path, 'config.json')
|
||||
vocab_path = os.path.join(model_path, 'vocab.json')
|
||||
merges_path = os.path.join(model_path, 'merges.txt')
|
||||
print("reading files from {}".format(self.model_path))
|
||||
config_path = os.path.join(self.model_path, 'config.json')
|
||||
vocab_path = os.path.join(self.model_path, 'vocab.json')
|
||||
merges_path = os.path.join(self.model_path, 'merges.txt')
|
||||
|
||||
with open(config_path, 'r', encoding='utf8') as f:
|
||||
self.config = json.load(f)
|
||||
@@ -24,7 +24,6 @@ class MinDalleBase:
|
||||
with open(merges_path, 'r', encoding='utf8') as f:
|
||||
merges = f.read().split("\n")[1:-1]
|
||||
|
||||
self.model_params = load_dalle_bart_flax_params(model_path)
|
||||
self.tokenizer = TextTokenizer(vocab, merges)
|
||||
|
||||
|
||||
|
@@ -7,12 +7,15 @@ from .min_dalle_base import MinDalleBase
|
||||
from .models.dalle_bart_encoder_flax import DalleBartEncoderFlax
|
||||
from .models.dalle_bart_decoder_flax import DalleBartDecoderFlax
|
||||
|
||||
from .load_params import load_dalle_bart_flax_params
|
||||
|
||||
|
||||
class MinDalleFlax(MinDalleBase):
|
||||
def __init__(self, is_mega: bool, is_reusable: bool = True):
|
||||
super().__init__(is_mega)
|
||||
self.is_reusable = is_reusable
|
||||
print("initializing MinDalleFlax")
|
||||
self.model_params = load_dalle_bart_flax_params(self.model_path)
|
||||
if is_reusable:
|
||||
self.init_encoder()
|
||||
self.init_decoder()
|
||||
|
@@ -6,7 +6,10 @@ import torch
|
||||
torch.set_grad_enabled(False)
|
||||
torch.set_num_threads(os.cpu_count())
|
||||
|
||||
from .load_params import convert_dalle_bart_torch_from_flax_params
|
||||
from .load_params import (
|
||||
convert_and_save_mega_torch_params,
|
||||
load_dalle_bart_flax_params
|
||||
)
|
||||
from .min_dalle_base import MinDalleBase
|
||||
from .models.dalle_bart_encoder_torch import DalleBartEncoderTorch
|
||||
from .models.dalle_bart_decoder_torch import DalleBartDecoderTorch
|
||||
@@ -19,10 +22,22 @@ class MinDalleTorch(MinDalleBase):
|
||||
is_reusable: bool = True,
|
||||
token_count: int = 256
|
||||
):
|
||||
print("initializing MinDalleTorch")
|
||||
super().__init__(is_mega)
|
||||
self.is_reusable = is_reusable
|
||||
self.token_count = token_count
|
||||
print("initializing MinDalleTorch")
|
||||
|
||||
if not is_mega:
|
||||
self.model_params = load_dalle_bart_flax_params(self.model_path)
|
||||
|
||||
self.encoder_params_path = os.path.join(self.model_path, 'encoder.pt')
|
||||
self.decoder_params_path = os.path.join(self.model_path, 'decoder.pt')
|
||||
|
||||
is_converted = os.path.exists(self.encoder_params_path)
|
||||
is_converted &= os.path.exists(self.decoder_params_path)
|
||||
if not is_converted:
|
||||
convert_and_save_mega_torch_params(is_mega, self.model_path)
|
||||
|
||||
if is_reusable:
|
||||
self.init_encoder()
|
||||
self.init_decoder()
|
||||
@@ -39,11 +54,7 @@ class MinDalleTorch(MinDalleBase):
|
||||
text_token_count = self.config['max_text_length'],
|
||||
glu_embed_count = self.config['encoder_ffn_dim']
|
||||
)
|
||||
params = convert_dalle_bart_torch_from_flax_params(
|
||||
self.model_params.pop('encoder'),
|
||||
layer_count=self.config['encoder_layers'],
|
||||
is_encoder=True
|
||||
)
|
||||
params = torch.load(self.encoder_params_path)
|
||||
self.encoder.load_state_dict(params, strict=False)
|
||||
del params
|
||||
if torch.cuda.is_available(): self.encoder = self.encoder.cuda()
|
||||
@@ -63,11 +74,7 @@ class MinDalleTorch(MinDalleBase):
|
||||
start_token = self.config['decoder_start_token_id'],
|
||||
is_verbose = True
|
||||
)
|
||||
params = convert_dalle_bart_torch_from_flax_params(
|
||||
self.model_params.pop('decoder'),
|
||||
layer_count=self.config['decoder_layers'],
|
||||
is_encoder=False
|
||||
)
|
||||
params = torch.load(self.decoder_params_path)
|
||||
self.decoder.load_state_dict(params, strict=False)
|
||||
del params
|
||||
if torch.cuda.is_available(): self.decoder = self.decoder.cuda()
|
||||
|
Reference in New Issue
Block a user