fixed an issue with argument parser
This commit is contained in:
parent
e7001f063c
commit
a014dccc05
11
README.md
11
README.md
|
@ -4,27 +4,26 @@ This is a minimal implementation of [DALL·E Mini](https://github.com/borisdayma
|
||||||
|
|
||||||
### Setup
|
### Setup
|
||||||
|
|
||||||
Run `sh setup.sh` to install dependencies and download pretrained models. The only required dependencies are `flax` and `torch`. In the bash script, GitHub LFS is used to download the VQGan detokenizer and the Weight & Biases python package is used to download the DALL·E Mini and DALL·E Mega transformer models. You can also download those files manually by visting the links in the bash script.
|
Run `sh setup.sh` to install dependencies and download pretrained models. The only required dependencies are `flax` and `torch`. In the bash script, GitHub LFS is used to download the VQGan detokenizer and the Weight & Biases python package is used to download the DALL·E Mini and DALL·E Mega transformer models. Those files can also be downloaded manually by visting the links in the bash script.
|
||||||
|
|
||||||
### Run
|
### Run
|
||||||
|
|
||||||
Here are some examples
|
Here are some examples
|
||||||
|
|
||||||
```
|
```
|
||||||
python3 image_from_text.py --text='alien life' --seed=7
|
python image_from_text.py --seed=7 --text='alien life'
|
||||||
```
|
```
|
||||||
![Alien](examples/alien.png)
|
![Alien](examples/alien.png)
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
||||||
python3 image_from_text.py --mega --seed=4 \
|
python image_from_text.py --mega --seed=4 --text='a comfy chair that looks like an avocado'
|
||||||
--text='a comfy chair that looks like an avocado'
|
|
||||||
```
|
```
|
||||||
![Avocado Armchair](examples/avocado_armchair.png)
|
![Avocado Armchair](examples/avocado_armchair.png)
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
||||||
python3 image_from_text.py --mega --seed=100 \
|
python image_from_text.py --mega --seed=100 --text='court sketch of godzilla on trial'
|
||||||
--text='court sketch of godzilla on trial'
|
|
||||||
```
|
```
|
||||||
|
|
||||||
![Godzilla Trial](examples/godzilla_trial.png)
|
![Godzilla Trial](examples/godzilla_trial.png)
|
|
@ -1,66 +1,21 @@
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
import json
|
|
||||||
import numpy
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from typing import Tuple, List
|
|
||||||
|
|
||||||
from min_dalle.load_params import load_dalle_bart_flax_params
|
from min_dalle.generate_image import generate_image_from_text
|
||||||
from min_dalle.text_tokenizer import TextTokenizer
|
|
||||||
from min_dalle.min_dalle_flax import generate_image_tokens_flax
|
|
||||||
from min_dalle.min_dalle_torch import (
|
|
||||||
generate_image_tokens_torch,
|
|
||||||
detokenize_torch
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument('--mega', action='store_true')
|
||||||
'--text',
|
parser.add_argument('--no-mega', dest='mega', action='store_false')
|
||||||
help='text to generate image from',
|
parser.set_defaults(mega=False)
|
||||||
type=str
|
parser.add_argument('--torch', action='store_true')
|
||||||
)
|
parser.add_argument('--no-torch', dest='torch', action='store_false')
|
||||||
parser.add_argument(
|
parser.set_defaults(torch=False)
|
||||||
'--seed',
|
parser.add_argument('--text', type=str)
|
||||||
help='random seed',
|
parser.add_argument('--seed', type=int, default=0)
|
||||||
type=int,
|
parser.add_argument('--image_path', type=str, default='generated')
|
||||||
default=0
|
parser.add_argument('--image_token_count', type=int, default=256) # for debugging
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--mega',
|
|
||||||
help='use larger dalle mega model',
|
|
||||||
action=argparse.BooleanOptionalAction
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--torch',
|
|
||||||
help='use torch transformers',
|
|
||||||
action=argparse.BooleanOptionalAction
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--image_path',
|
|
||||||
help='path to save generated image',
|
|
||||||
type=str,
|
|
||||||
default='generated.png'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--image_token_count',
|
|
||||||
help='number of image tokens to generate (for debugging)',
|
|
||||||
type=int,
|
|
||||||
default=256
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def load_dalle_bart_metadata(path: str) -> Tuple[dict, dict, List[str]]:
|
|
||||||
print("loading model")
|
|
||||||
for f in ['config.json', 'flax_model.msgpack', 'vocab.json', 'merges.txt']:
|
|
||||||
assert(os.path.exists(os.path.join(path, f)))
|
|
||||||
with open(path + '/config.json', 'r') as f:
|
|
||||||
config = json.load(f)
|
|
||||||
with open(path + '/vocab.json') as f:
|
|
||||||
vocab = json.load(f)
|
|
||||||
with open(path + '/merges.txt') as f:
|
|
||||||
merges = f.read().split("\n")[1:-1]
|
|
||||||
return config, vocab, merges
|
|
||||||
|
|
||||||
|
|
||||||
def ascii_from_image(image: Image.Image, size: int) -> str:
|
def ascii_from_image(image: Image.Image, size: int) -> str:
|
||||||
|
@ -71,59 +26,29 @@ def ascii_from_image(image: Image.Image, size: int) -> str:
|
||||||
return '\n'.join(''.join(row) for row in chars)
|
return '\n'.join(''.join(row) for row in chars)
|
||||||
|
|
||||||
|
|
||||||
def save_image(image: numpy.ndarray, path: str) -> Image.Image:
|
def save_image(image: Image.Image, path: str):
|
||||||
if os.path.isdir(path):
|
if os.path.isdir(path):
|
||||||
path = os.path.join(path, 'generated.png')
|
path = os.path.join(path, 'generated.png')
|
||||||
elif not path.endswith('.png'):
|
elif not path.endswith('.png'):
|
||||||
path += '.png'
|
path += '.png'
|
||||||
print("saving image to", path)
|
print("saving image to", path)
|
||||||
image: Image.Image = Image.fromarray(numpy.asarray(image))
|
|
||||||
image.save(path)
|
image.save(path)
|
||||||
return image
|
return image
|
||||||
|
|
||||||
|
|
||||||
def tokenize_text(
|
|
||||||
text: str,
|
|
||||||
config: dict,
|
|
||||||
vocab: dict,
|
|
||||||
merges: List[str]
|
|
||||||
) -> numpy.ndarray:
|
|
||||||
print("tokenizing text")
|
|
||||||
tokens = TextTokenizer(vocab, merges)(text)
|
|
||||||
print("text tokens", tokens)
|
|
||||||
text_tokens = numpy.ones((2, config['max_text_length']), dtype=numpy.int32)
|
|
||||||
text_tokens[0, :len(tokens)] = tokens
|
|
||||||
text_tokens[1, :2] = [tokens[0], tokens[-1]]
|
|
||||||
return text_tokens
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
model_name = 'mega' if args.mega == True else 'mini'
|
print(args)
|
||||||
model_path = './pretrained/dalle_bart_{}'.format(model_name)
|
|
||||||
config, vocab, merges = load_dalle_bart_metadata(model_path)
|
|
||||||
text_tokens = tokenize_text(args.text, config, vocab, merges)
|
|
||||||
params_dalle_bart = load_dalle_bart_flax_params(model_path)
|
|
||||||
|
|
||||||
image_tokens = numpy.zeros(config['image_length'])
|
image = generate_image_from_text(
|
||||||
if args.torch == True:
|
text = args.text,
|
||||||
image_tokens[:args.image_token_count] = generate_image_tokens_torch(
|
is_mega = args.mega,
|
||||||
text_tokens = text_tokens,
|
is_torch = args.torch,
|
||||||
seed = args.seed,
|
seed = args.seed,
|
||||||
config = config,
|
|
||||||
params = params_dalle_bart,
|
|
||||||
image_token_count = args.image_token_count
|
image_token_count = args.image_token_count
|
||||||
)
|
)
|
||||||
else:
|
|
||||||
image_tokens[...] = generate_image_tokens_flax(
|
|
||||||
text_tokens = text_tokens,
|
|
||||||
seed = args.seed,
|
|
||||||
config = config,
|
|
||||||
params = params_dalle_bart,
|
|
||||||
)
|
|
||||||
|
|
||||||
if args.image_token_count == config['image_length']:
|
if image != None:
|
||||||
image = detokenize_torch(image_tokens)
|
save_image(image, args.image_path)
|
||||||
image = save_image(image, args.image_path)
|
|
||||||
print(ascii_from_image(image, size=128))
|
print(ascii_from_image(image, size=128))
|
77
min_dalle/generate_image.py
Normal file
77
min_dalle/generate_image.py
Normal file
|
@ -0,0 +1,77 @@
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import numpy
|
||||||
|
from PIL import Image
|
||||||
|
from typing import Tuple, List
|
||||||
|
|
||||||
|
from min_dalle.load_params import load_dalle_bart_flax_params
|
||||||
|
from min_dalle.text_tokenizer import TextTokenizer
|
||||||
|
from min_dalle.min_dalle_flax import generate_image_tokens_flax
|
||||||
|
from min_dalle.min_dalle_torch import (
|
||||||
|
generate_image_tokens_torch,
|
||||||
|
detokenize_torch
|
||||||
|
)
|
||||||
|
|
||||||
|
def load_dalle_bart_metadata(path: str) -> Tuple[dict, dict, List[str]]:
|
||||||
|
print("parsing metadata from {}".format(path))
|
||||||
|
for f in ['config.json', 'flax_model.msgpack', 'vocab.json', 'merges.txt']:
|
||||||
|
assert(os.path.exists(os.path.join(path, f)))
|
||||||
|
with open(path + '/config.json', 'r') as f:
|
||||||
|
config = json.load(f)
|
||||||
|
with open(path + '/vocab.json') as f:
|
||||||
|
vocab = json.load(f)
|
||||||
|
with open(path + '/merges.txt') as f:
|
||||||
|
merges = f.read().split("\n")[1:-1]
|
||||||
|
return config, vocab, merges
|
||||||
|
|
||||||
|
|
||||||
|
def tokenize_text(
|
||||||
|
text: str,
|
||||||
|
config: dict,
|
||||||
|
vocab: dict,
|
||||||
|
merges: List[str]
|
||||||
|
) -> numpy.ndarray:
|
||||||
|
print("tokenizing text")
|
||||||
|
tokens = TextTokenizer(vocab, merges)(text)
|
||||||
|
print("text tokens", tokens)
|
||||||
|
text_tokens = numpy.ones((2, config['max_text_length']), dtype=numpy.int32)
|
||||||
|
text_tokens[0, :len(tokens)] = tokens
|
||||||
|
text_tokens[1, :2] = [tokens[0], tokens[-1]]
|
||||||
|
return text_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def generate_image_from_text(
|
||||||
|
text: str,
|
||||||
|
is_mega: bool = False,
|
||||||
|
is_torch: bool = False,
|
||||||
|
seed: int = 0,
|
||||||
|
image_token_count: int = 256
|
||||||
|
) -> Image.Image:
|
||||||
|
model_name = 'mega' if is_mega else 'mini'
|
||||||
|
model_path = './pretrained/dalle_bart_{}'.format(model_name)
|
||||||
|
config, vocab, merges = load_dalle_bart_metadata(model_path)
|
||||||
|
text_tokens = tokenize_text(text, config, vocab, merges)
|
||||||
|
params_dalle_bart = load_dalle_bart_flax_params(model_path)
|
||||||
|
|
||||||
|
image_tokens = numpy.zeros(config['image_length'])
|
||||||
|
if is_torch:
|
||||||
|
image_tokens[:image_token_count] = generate_image_tokens_torch(
|
||||||
|
text_tokens = text_tokens,
|
||||||
|
seed = seed,
|
||||||
|
config = config,
|
||||||
|
params = params_dalle_bart,
|
||||||
|
image_token_count = image_token_count
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
image_tokens[...] = generate_image_tokens_flax(
|
||||||
|
text_tokens = text_tokens,
|
||||||
|
seed = seed,
|
||||||
|
config = config,
|
||||||
|
params = params_dalle_bart,
|
||||||
|
)
|
||||||
|
|
||||||
|
if image_token_count == config['image_length']:
|
||||||
|
image = detokenize_torch(image_tokens)
|
||||||
|
return Image.fromarray(image)
|
||||||
|
else:
|
||||||
|
return None
|
Loading…
Reference in New Issue
Block a user