previous commit broke flax model, fixed now
This commit is contained in:
parent
5aa6fe49bf
commit
9d6b6dcc92
|
@ -3,6 +3,7 @@ import json
|
||||||
import numpy
|
import numpy
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from typing import Tuple, List
|
from typing import Tuple, List
|
||||||
|
import torch
|
||||||
|
|
||||||
from min_dalle.load_params import load_dalle_bart_flax_params
|
from min_dalle.load_params import load_dalle_bart_flax_params
|
||||||
from min_dalle.text_tokenizer import TextTokenizer
|
from min_dalle.text_tokenizer import TextTokenizer
|
||||||
|
@ -53,25 +54,23 @@ def generate_image_from_text(
|
||||||
text_tokens = tokenize_text(text, config, vocab, merges)
|
text_tokens = tokenize_text(text, config, vocab, merges)
|
||||||
params_dalle_bart = load_dalle_bart_flax_params(model_path)
|
params_dalle_bart = load_dalle_bart_flax_params(model_path)
|
||||||
|
|
||||||
image_tokens = numpy.zeros(config['image_length'])
|
|
||||||
if is_torch:
|
if is_torch:
|
||||||
image_tokens[:image_token_count] = generate_image_tokens_torch(
|
image_tokens = generate_image_tokens_torch(
|
||||||
text_tokens = text_tokens,
|
text_tokens = text_tokens,
|
||||||
seed = seed,
|
seed = seed,
|
||||||
config = config,
|
config = config,
|
||||||
params = params_dalle_bart,
|
params = params_dalle_bart,
|
||||||
image_token_count = image_token_count
|
image_token_count = image_token_count
|
||||||
)
|
)
|
||||||
|
if image_token_count == config['image_length']:
|
||||||
|
image = detokenize_torch(image_tokens)
|
||||||
|
return Image.fromarray(image)
|
||||||
else:
|
else:
|
||||||
image_tokens[...] = generate_image_tokens_flax(
|
image_tokens = generate_image_tokens_flax(
|
||||||
text_tokens = text_tokens,
|
text_tokens = text_tokens,
|
||||||
seed = seed,
|
seed = seed,
|
||||||
config = config,
|
config = config,
|
||||||
params = params_dalle_bart,
|
params = params_dalle_bart,
|
||||||
)
|
)
|
||||||
|
image = detokenize_torch(torch.tensor(image_tokens))
|
||||||
if image_token_count == config['image_length']:
|
|
||||||
image = detokenize_torch(image_tokens)
|
|
||||||
return Image.fromarray(image)
|
return Image.fromarray(image)
|
||||||
else:
|
|
||||||
return None
|
|
|
@ -30,7 +30,7 @@ def load_vqgan_torch_params(path: str) -> Dict[str, torch.Tensor]:
|
||||||
|
|
||||||
for i in P:
|
for i in P:
|
||||||
P[i] = torch.tensor(P[i])
|
P[i] = torch.tensor(P[i])
|
||||||
if torch.cuda.is_available(): P[i] = P[i].cuda()
|
# if torch.cuda.is_available(): P[i] = P[i].cuda()
|
||||||
|
|
||||||
P['embedding.weight'] = P.pop('quantize.embedding.embedding')
|
P['embedding.weight'] = P.pop('quantize.embedding.embedding')
|
||||||
|
|
||||||
|
@ -87,7 +87,7 @@ def convert_dalle_bart_torch_from_flax_params(
|
||||||
|
|
||||||
for i in P:
|
for i in P:
|
||||||
P[i] = torch.tensor(P[i])
|
P[i] = torch.tensor(P[i])
|
||||||
if torch.cuda.is_available(): P[i] = P[i].cuda()
|
# if torch.cuda.is_available(): P[i] = P[i].cuda()
|
||||||
|
|
||||||
for i in list(P):
|
for i in list(P):
|
||||||
if 'kernel' in i:
|
if 'kernel' in i:
|
||||||
|
|
|
@ -85,7 +85,7 @@ def generate_image_tokens_torch(
|
||||||
image_token_count: int
|
image_token_count: int
|
||||||
) -> LongTensor:
|
) -> LongTensor:
|
||||||
text_tokens = torch.tensor(text_tokens).to(torch.long)
|
text_tokens = torch.tensor(text_tokens).to(torch.long)
|
||||||
if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
# if torch.cuda.is_available(): text_tokens = text_tokens.cuda()
|
||||||
encoder_state = encode_torch(
|
encoder_state = encode_torch(
|
||||||
text_tokens,
|
text_tokens,
|
||||||
config,
|
config,
|
||||||
|
|
|
@ -127,10 +127,10 @@ class DalleBartDecoderTorch(nn.Module):
|
||||||
self.start_token = torch.tensor([start_token]).to(torch.long)
|
self.start_token = torch.tensor([start_token]).to(torch.long)
|
||||||
self.pad_token = torch.tensor([1]).to(torch.long)
|
self.pad_token = torch.tensor([1]).to(torch.long)
|
||||||
self.condition_factor = torch.tensor([10]).to(torch.float)
|
self.condition_factor = torch.tensor([10]).to(torch.float)
|
||||||
if torch.cuda.is_available():
|
# if torch.cuda.is_available():
|
||||||
self.start_token = self.start_token.cuda()
|
# self.start_token = self.start_token.cuda()
|
||||||
self.pad_token = self.pad_token.cuda()
|
# self.pad_token = self.pad_token.cuda()
|
||||||
self.condition_factor = self.condition_factor.cuda()
|
# self.condition_factor = self.condition_factor.cuda()
|
||||||
self.image_token_count = image_token_count
|
self.image_token_count = image_token_count
|
||||||
self.embed_tokens = nn.Embedding(image_vocab_size + 1, embed_count)
|
self.embed_tokens = nn.Embedding(image_vocab_size + 1, embed_count)
|
||||||
self.embed_positions = nn.Embedding(image_token_count, embed_count)
|
self.embed_positions = nn.Embedding(image_token_count, embed_count)
|
||||||
|
@ -204,7 +204,7 @@ class DalleBartDecoderTorch(nn.Module):
|
||||||
|
|
||||||
for i in range(self.sample_token_count):
|
for i in range(self.sample_token_count):
|
||||||
token_index = torch.tensor([i]).to(torch.long)
|
token_index = torch.tensor([i]).to(torch.long)
|
||||||
if torch.cuda.is_available(): token_index = token_index.cuda()
|
# if torch.cuda.is_available(): token_index = token_index.cuda()
|
||||||
probs, keys_values_state = self.decode_step(
|
probs, keys_values_state = self.decode_step(
|
||||||
text_tokens = text_tokens,
|
text_tokens = text_tokens,
|
||||||
encoder_state = encoder_state,
|
encoder_state = encoder_state,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user